

解答例と解説

●熊本ゼミナール教務部 編

第1講座 数の計算

P. 2

1 <解答例>

- (1) 0.11 (2) 8 (3) $-\frac{1}{6}$ (4) 0.8 (5) $\frac{7}{10}$
- (6) $\frac{10}{21}$ (7) -4 (8) $\frac{5}{12}$ (9) $\frac{13}{21}$ (10) $\frac{9}{14}$

P. 2

2 <解答例>

- (1) 6.3 (2) 16 (3) 0.6 (4) 0.56 (5) 14
- (6) 756 (7) $\frac{5}{12}$ (8) 660 (9) 0.35 (10) 0.2

P. 3

3 <解答例>

- (1) 14 (2) -26 (3) -5 (4) -18 (5) 13
- (6) 15 (7) -20 (8) -7 (9) -6 (10) -13

P. 3

4 <解答例>

- (1) -1
- (2) (例)ア1 イ8
- 0 1 23

<考え方・解き方>

- (1)5つの□に数をいくつか入れてみると、次のよう な入れ方も考えられる。

 - 0 -1 3
- 0 3 1
- ただし、上の他に上下左右の入れかわり、回転させ たものなど別解が多数考えられる。
- (2)イには4の倍数がはいるので、ア、イにはいる数を 表で整理すると、アが0となるときは題意に合わな いので、(ア、イ)の組は次のように何組も考えられ

P. 4

5 <解答例>

- (10) $7\sqrt{2}$

<考え方・解き方>

- (1) $(\sqrt{6}+1)^2$ $(\sqrt{6} + 1)^{-1} = (\sqrt{6})^{2} + 2 \times \sqrt{6} \times 1 + 1^{2} = 3\sqrt{3} + \frac{15\sqrt{3}}{3}$ $=7+2\sqrt{6}$
- (2) $\sqrt{27} + \frac{15}{\sqrt{3}}$ $=3\sqrt{3}+5\sqrt{3}$ $=8\sqrt{3}$

- (3) $(\sqrt{6} + \sqrt{3})(\sqrt{8} 2)$ $=\sqrt{48}-2\sqrt{6}+\sqrt{24}-2\sqrt{3}$ $=4\sqrt{3}-2\sqrt{6}+2\sqrt{6}-2\sqrt{3}$ $=2\sqrt{3}$
- (4) $\frac{\sqrt{75}}{3} + \sqrt{\frac{16}{3}}$ $=\frac{5\sqrt{3}}{3}+\frac{\sqrt{16}}{\sqrt{3}}$ $=\frac{5\sqrt{3}}{3}+\frac{4\sqrt{3}}{3}$ $=\frac{9\sqrt{3}}{2}$
- (5) $\sqrt{90} + \frac{60}{\sqrt{10}}$ $=3\sqrt{10}+6\sqrt{10}$ $=9\sqrt{10}$
- $=3\sqrt{3}$
- (6) $(\sqrt{5}+1)^2-\sqrt{45}$ $=(\sqrt{5})^2+2\times\sqrt{5}\times1+1^2-3\sqrt{5}$ $=5+2\sqrt{5}+1-3\sqrt{5}$ $=6-\sqrt{5}$
- (7) $\frac{\sqrt{10}}{4} \times \sqrt{5} + \frac{3}{\sqrt{8}}$ $=\frac{5\sqrt{2}}{4}+\frac{3}{2\sqrt{2}}$ $=\frac{5\sqrt{2}}{4}+\frac{3\sqrt{2}}{4}$ $=2\sqrt{2}$
- (8) $(\sqrt{6}-2)(\sqrt{3}+\sqrt{2})+\frac{6}{\sqrt{2}}$ $=\sqrt{18}+\sqrt{12}-2\sqrt{3}-2\sqrt{2}+\frac{6\sqrt{2}}{2}$ $=3\sqrt{2}+2\sqrt{3}-2\sqrt{3}-2\sqrt{2}+3\sqrt{2}$ $=4\sqrt{2}$
- (9) $\sqrt{30} \div \sqrt{5} + \sqrt{54}$ (10) $\frac{6}{\sqrt{2}} + \sqrt{32}$ $= \frac{\sqrt{30}}{\sqrt{5}} + 3\sqrt{6}$ $= \frac{6\sqrt{2}}{2} + 4\sqrt{2}$ $=\sqrt{6}+3\sqrt{6}$ $=3\sqrt{2}+4\sqrt{2}$ $=4\sqrt{6}$

P.4

6 <解答例>

- (1) n = -6, 4 など (2) 12.25
- (3) ア4 イ5 ウ7 (4) ①ウ ②ア
- (5) 17, 18, 19 (6) n = 12(8) (例)ア3 イ27
- (7) a = 7, b = 5(9) P = 83
- (10) 16個

<考え方・解き方>

- $(1)20(4n+29) = 2^2 \times 5 \times (4n+29)$ \$\tag{7}\$ \$\tag{7}\$ \$\tag{7}\$. 4n+29=5 $\times a^2$ とおくと.
 - a=1 のとき,

$$4n + 29 = 5 \times 1^2 \qquad n = -6$$

a=2 のとき.

$$4n+29=5\times 2^2$$
 $n=-\frac{9}{4}$ なので不適。

a=3のとき、

$$4n + 29 = 5 \times 3^2$$
 $n = 4$

この要領で、a=4, 5, 6…として調べていくと、

n が見つかっていく。

 $(2)\sqrt{54} = 7.35 \text{ l}$).

$$3\sqrt{6} = 7.35$$

$$\sqrt{6} = 2.45$$

ここで、 $\sqrt{150} = 5\sqrt{6}$ だから、

$$\sqrt{150} = 5\sqrt{6}$$
$$= 5 \times 2. 45$$

= 12.25

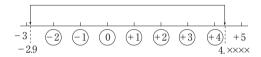
 $(3)\sqrt{16} < \sqrt{21} < \sqrt{25} \, \text{l} \, \text{h}$

$$4 < \sqrt{21} < 5$$

よって.

$$\sqrt{21} = 4. \times \times \times \times$$

-2.9より大きく4.××××より小さい整数は、-2.-1.0.1.2.3.4の7個である。



(4)① $a = -3^2$

②
$$a = \sqrt{4} + \sqrt{36}$$

$$= -3 \times 3$$
$$= -9$$

$$= 2 + 6$$
$$= 8$$

$$= 8$$

 $= \sqrt{64}$

(5)3つの連続する自然数をn-1, n, n+1とおくと、これらの和は、(n-1)+n+(n+1)=3n, 3n は3の倍数で、これが50に近くなるのは48, 51, 54のいずれかである。この中で、4 で割って2 余る数を求めると、

$$48 \div 4 = 12$$

$$54 \div 4 = 13 余 り 2$$

よって、3n = 54より、n = 18

連続する3つの自然数は17,18,19となる。

 $(6)75 = 3 \times 5^2$ なので、

$$\frac{\sqrt{75}n}{2} = \sqrt{\frac{3\times5^2\times n}{4}}$$

よって、 $n=3\times4$

$$=12$$

 $(7)2 < \sqrt{a} < 3$ L \emptyset ,

$$\sqrt{4}$$
 < \sqrt{a} < $\sqrt{9}$

4 < a < 9

だから、a=5、6、7、8のいずれかである。

ここで,

$$ab-a=28$$

$$a(b-1) = 28$$

よって、aは28の約数なので、

$$a = 7$$
, $b = 5$

(8)√12=2√3だから、これと√戸がまとめられるには 例えば下に3が入ればよいので。

$$\sqrt{12} + \sqrt{3} = 2\sqrt{3} + \sqrt{3}$$
$$= 3\sqrt{3}$$
$$= \sqrt{27}$$

このとき、イには27が入る。

(9)P = 10a + b, Q = 10b + a(a, b は 1 けたの自然数) と

すると,

$$P - Q = 45$$

$$(10a+b) - (10b+a) = 45$$

$$9a - 9b = 45$$

$$a-b=5$$

よって、a と b の組み合わせは、次の 4 組ある。

また.

$$P + Q = (10a + b) + (10b + a)$$
$$= 11a + 11b$$
$$= 11(a + b)$$

なので、 $\sqrt{P+Q}=\sqrt{11\,(a+b)}$ が自然数になるためには、a+b=11であればよい。よって、上の表より、

$$a = 8$$
, $b = 3$

よって、
$$P = 10a + b = 83$$

 $\sqrt{64} < \sqrt{a} < \sqrt{81}$

よって、a=65、66、……80である。

P. 6

7 <解答例>

(1) 5 (2) 13けた

<考え方・解き方>

(1)2000を素因数分解して考えると、

$$\frac{2000}{n} = \frac{2^4 \times 5^3}{n}$$

よって、2の指数はもともと偶数であるから、5の指数が偶数になるような約分ができればよい。よって、n=5である。ちなみに、n=5にするとどのようになるかというと、

$$\frac{2^4 \times 5^3}{5} = 2^4 \times 5^2$$
= $(2^2 \times 5) \times (2^2 \times 5)$
= $(2^2 \times 5)^2$

となり、n=5のとき $\frac{2000}{n}=(2^2\times 5)^2=20^2$ で、20の平方のかたちになる。

(2)(1)と同じ考えで、その他の場合をさがすと、n=5、 5×2^2 、 5×2^4 、 5^3 、 $5^3\times 2^2$ 、 $5^3\times 2^4$ がある。 これをすべてかけあわせると、

$$2^{12} \times 5^{12} = (2 \times 5)^{12}$$

$$=10^{12}$$

となり、1012は13けたの数になる。

P. 6

8 <解答例>

(1) 8 (2) 小数第111位

く考え方・解き方>

 $(1)\frac{5}{13} = 0.$ $(3 8 4 6 1 5)(3 8 4 6 1 5) 3 8 \cdots$ となり、

384615 の 6 個の数字がくり返されるから、50 番の数を求めるには、50を6 で割って、その余りを考えればよい。よって、

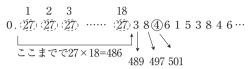
 $50 \div 6 = 8 \cdots 2$

よって、下図より、小数第50位の数は8である。

(2)3+8+4+6+1+5=27であるので、(1)と同様に27 のかたまりがいくつあると500をこえるかを考える。よって、

$$500 \div 27 = 18 \cdots 14$$

となる。



$$6 \times 18 + 3 = 111$$

よって、④は小数第111位の数である。

P. 6

9 <解答例>

- (1) 7
- (2) 次のいずれかである。

$$\boxed{1} = 11$$
 $\boxed{1} = 13$ $\boxed{1} = 14$ $\boxed{1} = 14$ $\boxed{1} = 14$ $\boxed{1} = 17$

<考え方・解き方>

- (1) 同に入る数は、7または8であるが、1番目~4番目の約数に4がないので、5番目以降の約数に4の倍数がでてくることはない。よって、8は条件に合わない。

P. 7

10 <解答例>

残りの2つの数は, n-6, n+6と表される。 3つの数の和は,

(n-6) + n + (n+6) = 3n

n は中央の数だから、3n は中央の数の 3 倍である。

第2講座 式の計算

P. 8

1 <解答例>

- (1) 5a + 4b
- (2) 7a 8
- (3) 7x 2y
- (4) x + 2u
- (5) 2x+15
 - (6) 3x 2y
- (7) 2x + 7u
- (8) 2x + 9y
- (9) x + 15y
- (10) 15x + 2u

<考え方・解き方>

- (1) 3(4a+b)-(7a-b) (2) 5a-7-(-2a+1)= 12a + 3b - 7a + b
 - =5a-7+2a-1
 - = 12a 7a + 3b + b

- =5a+2a-7-1
- =5a+4b
- =7a-8
- (3) 5x+4y-2(3y-x) (4) 8(x-y)-(7x-10y)=5x+4y-6y+2x
 - =8x-8y-7x+10y
 - =5x+2x+4y-6y
- =8x-7x-8y+10y
- =7x-2y
- =x+2y
- (5) 9x 13 + 7(4 x)=9x-13+28-7x
- (6) 7x 6y + 4(y x)=7x-6y+4y-4x
- =9x-7x-13+28
- =7x 4x 6y + 4y
- =2x+15
- =3x-2y
- (7) 8x + y 6(x y)= 8x + y - 6x + 6y
- (8) 7x + y (5x 8y)=7x + y - 5x + 8y
- =8x-6x+y+6y
- =7x-5x+y+8y
- =2x+7y
- =2x + 9y
- (9) 3(x+y) 2(x-6y) (10) 8x + 9y + 7(x-y)=3x+3y-2x+12y
 - =8x+9y+7x-7y
 - = x + 15y
- =8x+7x+9y-7y=15x + 2y

P. 8

2 <解答例>

- (1) $4a^2b$

- (2) 2b (3) 24a (4) $-48a^2b^3$
- (5) 3ab(9) 2a
- (6) -3a (7) -8ab (8) -2a
- (10) -54a

<考え方・解き方>

- (1) $8a^3 \times (-b)^2 \div 2ab$ $=8a^3\times b^2\times \frac{1}{2ab}$
- (2) $9a \div (6ab)^2 \times 8ab^3$ $=9a \div 36a^2b^2 \times 8ab^3$
- = $8a^3 \times b^2$
- $=9a\times\frac{1}{36a^2b^2}\times8ab^3$
- $= \frac{8a^3b^2}{}$ 2ab
- $72a^{2}b^{3}$ $=\frac{72}{36a^2b^2}$ =2b

- $=4a^2b$
- (3) $(-4a)^2 \times 9a \div 6a^2$ $= 16a^2 \times 9a \div 6a^2$
- (4) $(-2)^3 \times (ab)^2 \times 6b$ $= -8 \times a^2b^2 \times 6b$
- $=16a^2\times 9a\times \frac{1}{6a^2}$
- $= -48a^2b^3$
- $=\frac{16a^2\times9a}{}$ $6a^2$
- =24a
- (5) $9a^2 \div (-6ab) \times (-2b^2)$
- $=9a^{2}\times(-\frac{1}{6ab})\times(-2b^{2})$
- $=\frac{9a^2\times 2b^2}{}$ 6ab
- =3ab

- (6) $48a^2b^2 \div (-4a) \div (-2b)^2$
 - $=48a^2b^2\times(-\frac{1}{4a})\times\frac{1}{4b^2}$
 - $=-\frac{48a^2b^2}{1}$ $16ab^2$
 - = -3a
- (7) $(-6a)^2 \times 2ab^2 \div (-9a^2b)$ $=36a^2 \times 2ab^2 \div (-9a^2b)$
 - = -8ab
- (8) $6ab \div (-9a^2b^2) \times 3a^2b$
- (9) $8a^3b \div (-6ab)^2 \times 9b$ $= 8a^3b \div 36a^2b^2 \times 9b$
- $=6ab\times\left(-\frac{1}{\Omega a^2b^2}\right)\times 3a^2b$
- $=8a^3b \times \frac{1}{36a^2b^2} \times 9b$
- $=-\frac{18a^3b^2}{}$ =-2a
- $=\frac{72a^3b^2}{36a^2b^2}$

=2a

- (10) $-6a^2 \times 9ab^2 \div (ab)^2$ $=-6a^2\times 9ab^2 \div a^2b^2$
 - $=-6a^2\times 9ab^2\times \frac{1}{a^2b^2}$
 - $= -\frac{6a^2 \times 9ab^2 \times 1}{6a^2 \times 9ab^2 \times 1}$
 - $=-\underline{54a^3b^2}$ a^2b^2
 - = -54a

P. 9

3 <解答例>

- (1) $\frac{9x-5y}{2}$ (2) $\frac{7a+3}{2}$ (3) $\frac{x-3y}{10}$

- (4) $\frac{x-3}{8}$ (5) $\frac{7x-y}{12}$ (6) $\frac{7x-y}{2}$
- (7) $\frac{5x-y}{6}$ (8) $\frac{5x+9y}{8}$ (9) $\frac{9x+y}{8}$
- (10) $\frac{13x + 5y}{36}$

<考え方・解き方>

- $(1) \quad 4x 6y + \frac{x+7y}{2} \\ \qquad (2) \quad \frac{9a-5}{2} (a-4)$

 - $= \frac{8x 12y}{2} + \frac{x + 7y}{2} \qquad \qquad = \frac{9a 5}{2} \frac{2a 8}{2}$
 - $=\frac{(8x-12y)+(x+7y)}{2} \qquad =\frac{(9a-5)-(2a-8)}{2}$ $= \frac{8x - 12y + x + 7y}{2} \qquad \qquad = \frac{7a + 3}{2}$
 - $=\frac{9x-5y}{2}$
- (3) $\frac{3x-y}{2} \frac{7x-y}{5}$ (4) $\frac{x-6}{4} \frac{x-9}{8}$
 - $= \frac{15x 5y}{10} \frac{14x 2y}{10} \qquad \qquad = \frac{2x 12}{8} \frac{x 9}{8}$
 - $=\frac{(15x-5y)-(14x-2y)}{10} = \frac{(2x-12)-(x-9)}{8}$ $= \frac{15x - 5y - 14x + 2y}{10} \qquad = \frac{2x - 12 - x + 9}{8}$
 - $=\frac{x-3y}{10}$
- $=\frac{x-3}{2}$

$$(5) \quad \frac{x-7y}{4} + \frac{x+5y}{3} \qquad (6) \quad \frac{5x+7y}{2} + x-4y$$

$$= \frac{3x-21y}{12} + \frac{4x+20y}{12} \qquad = \frac{5x+7y}{2} + \frac{2x}{2} - \frac{8y}{2}$$

$$= \frac{(3x-21y) + (4x+20y)}{12} \qquad = \frac{5x+7y+2x-8y}{2}$$

$$= \frac{7x-y}{12} \qquad = \frac{7x-y}{2}$$

$$(7) \quad \frac{x+y}{6} + \frac{2x-y}{3} \qquad (8) \quad \frac{9x+5y}{8} - \frac{x-y}{2}$$

$$= \frac{x+y}{6} + \frac{4x-2y}{6} \qquad = \frac{9x+5y-4(x-y)}{8}$$

$$= \frac{x+y+4x-2y}{6} \qquad = \frac{9x+5y-4x+4y}{8}$$

$$= \frac{5x-y}{6} \qquad = \frac{5x+9y}{8}$$

$$(9) \quad \frac{x+3y}{4} + \frac{7x-5y}{8} \qquad (10) \quad \frac{x+y}{4} + \frac{x-y}{9}$$

$$= \frac{2x+6y}{8} + \frac{7x-5y}{8} \qquad = \frac{9x+9y}{36} + \frac{4x-4y}{36}$$

$$= \frac{(2x+6y) + (7x-5y)}{8} \qquad = \frac{(9x+9y) + (4x-4y)}{36}$$

$$= \frac{9x+y}{8} \qquad = \frac{9x+9y}{36}$$

$$= \frac{9x+9y}{36} \qquad = \frac{9x+9y+4x-4y}{36}$$

$$= \frac{9x+9y}{36} \qquad = \frac{13x+5y}{36}$$

4 <解答例>

- (1) 2x + 3y
- (2) 8a+b (3) xy-2
- (4) a^2-4b (5) 3a-2b (6) 2a+1

<考え方・解き方>

$$\begin{aligned} &(1) \quad (4x^3y + 6x^2y^2) \div 2x^2y \quad (2) \quad (8a^2b^2 + ab^3) \div ab^2 \\ &= \frac{4x^3y}{2x^2y} + \frac{6x^2y^2}{2x^2y} \\ &= 2x + 3y \\ &(3) \quad (5x^2y - 10x) \div 5x \end{aligned} \qquad \begin{aligned} &(2) \quad (8a^2b^2 + ab^3) \div ab^2 \\ &= \frac{8a^2b^2}{ab^2} + \frac{ab^3}{ab^2} \\ &= 8a + b \end{aligned}$$

(3)
$$(5x^2y - 10x) \div 5x$$
 (4) $(a^3b - 4ab^2) \div ab$

$$= \frac{5x^2y}{5x} - \frac{10x}{5x}$$

$$= \frac{a^3b}{ab} - \frac{4ab^2}{ab}$$

$$= xy - 2$$

$$= a^2 - 4b$$

(5)
$$(12a^2 - 8ab) \div 4a$$
 (6) $(8a^3b^2 + 4a^2b^2) \div (2ab)^2$
= $\frac{12a^2}{4a} - \frac{8ab}{4a}$ = $(8a^3b^2 + 4a^2b^2) \div 4a^2b^2$
= $2a + 1$

P. 10

5 <解答例>

- $(7) 9x^2$
- (8) -8x+9 (9) $2x^2-1$
- (10) $9x^2 5x + 34$

<考え方・解き方>

(1)
$$(x-2)(x+4) + x(x-2)$$

= $x^2 + 2x - 8 + x^2 - 2x$
= $2x^2 - 8$

(2)
$$(x-4)^2 + x(8-x)$$
 (3) $9x^2 - (3x-1)^2$
 $= x^2 - 8x + 16 + 8x - x^2$ $= 9x^2 - (9x^2 - 6x + 1)$
 $= 16$ $= 9x^2 - 9x^2 + 6x - 1$
 $= 6x - 1$

$$(4) (x+4)(x-4) - (x+2)(x-8)$$

$$= x^2 - 16 - (x^2 - 6x - 16)$$

$$= x^2 - 16 - x^2 + 6x + 16$$

$$= 6x$$

(5)
$$(3x-1)^2 + 6x(1-x)$$

= $9x^2 - 6x + 1 + 6x - 6x^2$
= $3x^2 + 1$

(6)
$$(3x+7)(3x-7) - 9x(x-1)$$

= $9x^2 - 49 - 9x^2 + 9x$
= $9x - 49$

(7)
$$(2x+1)^2 + (5x+1)(x-1)$$

= $(4x^2 + 4x + 1) + (5x^2 - 5x + x - 1)$
= $9x^2$

(8)
$$(2x-3)^2 - 4x(x-1)$$

= $4x^2 - 12x + 9 - 4x^2 + 4x$
= $-8x + 9$

(9)
$$(x+1)(x-5) + (x+2)^2$$

= $x^2 - 4x - 5 + x^2 + 4x + 4$
= $2x^2 - 1$

(10)
$$(3x+1)(3x-1) - 5(x-7)$$

= $9x^2 - 1 - 5x + 35$
= $9x^2 - 5x + 34$

P 10

6 <解答例>

- (1) (x-1)(x+8) (2) (a-12)(a+2)
- (3) m(x+3)(x-2)
- (4) x(2a-3)(2a+3)
- (5) 2(x-2)(x+5)
- (6) (x+6)(x-1)

<考え方・解き方>

(1)x+2=M とおくと.

$$M^2 + 3M - 18$$

= $(M-3)(M+6)$
もとにもどすと,
= $\{(x+2) - 3\}\{(x+2)$

$$= \{(x+2) - 3\} \{(x+2) + 6\}$$
$$= (x-1)(x+8)$$

(3)
$$m(x^2-6) + mx$$
 (4) $4a^2x-9x$

$$=x(4a^2-9)$$

$$= m \{(x^2 - 6) + x\}$$

= $m (x^2 + x - 6)$

$$=x(2a-3)(2a+3)$$

$$= m(x+3)(x-2)$$

$$= m(x+3)(x-2)$$
(5) $2x^2 + 6x - 20$ (6) $x+2 = M \ge 3 \le 2$,

$$= 2(x^2 + 3x - 10)$$

$$M^2 + M - 12$$

= $(M+4)(M-3)$

$$=2(x-2)(x+5)$$

$$= \{(x+2) + 4\} \{(x+2) - (x+6)(x-1)\}$$

P. 11

7 <解答例>

- (1) 100 (2) 2504 (3) 76
- (4) $\mathcal{T}(x+y)(x-y) + 12\sqrt{2}$

<考え方・解き方>

(1)与式 = $(a-2b)^2$ $= (478 - 2 \times 234)^{2}$ $= (478 - 468)^{2}$ $=10^{2}$ =100

(2)(x+2)(y-2) = (48+2)(52-2) $=50 \times 50$ =2500

左辺を展開して,

$$xy - 2x + 2y - 4 = 2500$$

\$\(\(\tau \).

xy - 2x + 2y = 2500 + 4=2504

(3) a + b = 76, $a - b = 1 \ge 5$ $a^2 - b^2$ = (a+b)(a-b) $=76\times1$ = 76

(4) x + y = 6, $x - y = 2\sqrt{2}$ となるので, = (x+y)(x-y) $=6\times2\sqrt{2}$ $=12\sqrt{2}$

P. 11

8 <解答例>

(1) \mathcal{T} 9 $\mathcal{A} \frac{a+1}{2}$ (2) $b = \frac{a+4}{6}$

 $(3) \quad \frac{4}{3}a - b \left(\overline{\Xi} \right) \qquad \qquad (4) \quad \frac{a-2b}{3} (円)$

(5) $714 \quad \frac{4}{5}t - 2$ (6) 0.8a + 3b < 1000

(7) ①30(個) ② $n^2 - n$ (個)

(8) ① ab - a (個) ② (n =) 8

(9) $\bigcirc 165$ $\bigcirc 25n + 15$

(10) (1)5n + 15 (2)742 $\checkmark 10$

<考え方・解き方>

(1) $n \sim 2n$ の間に17が初めて現れるのは.

n=4 のとき、 $4 \sim 8$ n=5 のとき、 $5 \sim 10$ n=6 のとき、 $6 \sim 12$ n=7のとき、 $7\sim14$ n=8 のとき、 $8 \sim 16$ n=9 のとき、 $9 \sim 18$

よって、17が初めて現れるのは9段目となる。

また. 奇数1が現れるのは1段目

奇数3が現れるのは2段目

奇数5が現れるのは3段目

奇数7が現れるのは4段目

よって, (奇数+1)÷2=段数であるから,

$$(a+1) \div 2 = \frac{a+1}{2}$$

(2)4本足りないので、a本に4本加える。これをb人 でわけると6本ずつになるので.

$$(a+4) \div b = 6$$

$$\frac{a+4}{b}=6$$

a + 4 = 6b

$$6b = a + 4$$

$$b = \frac{a+4}{6}$$

(3)Cの得票をx票、全投票数をy票として、A、B、 Cの得票を表にすると.

A	В	С	全投票数
a(票)	a+b(票)	x(票)	y(票)

ここで、y の30%がa なので、

$$y \times \frac{30}{100} = a$$

$$y = \frac{10}{3}a$$

と表せるので.

$$a + (a+b) + x = y$$

$$a + (a + b) + x = \frac{10}{3}a$$

$$2a+b+x=\frac{10}{3}a$$

$$x = \frac{10}{3}a - 2a - b$$

$$x=\frac{4}{3}a-b$$

(4)子ども1人分の入園料をx円とすると、

$$2b + 3x = a$$

$$3x = a - 2b$$

$$x = \frac{a-2b}{3}$$

(5)点 P は、 B から C の 8 目盛りを10秒で動くから、

1秒で、
$$\frac{8}{10} = \frac{4}{5}$$
 目盛り動く

よって.

$$t$$
秒で、 $\frac{4}{5}t$ 目盛り動く

20秒後は t=20を上の式に代入して,

$$\frac{4}{5} \times 20 = 16 (目盛り)$$

A(-2)から出発しているので、2をひいて、

$$16 - 2 = 14$$

よって、20秒後の点Pの位置に対応する数は14と なる。これを一般化すると、t 秒後の点 P の位置に 対応する数は、 $\frac{4}{5}t-2$ となる。

(6)すいか1個の代金は、

 $a \times (1 - 0.2) = 0.8a$

よって、すいか1個とトマト3個の代金の合計は、

 $0.8a \times 1 + b \times 3 = 0.8a + 3b$

これが1000円より安いので、

0.8a + 3b < 1000

- (7)①正六角形の辺上に(6-1)個の碁石が、6組並ぶと 考えると、必要な碁石の個数は、(6-1)×6=30 (個)となる。
 - ②正 n 角形の辺上に(n-1)個の碁石が、n 組並ぶ と考えると、必要な碁石の個数は、 $(n-1) \times n =$

 n^2-n (個)となる。

- (8)①正 a 角形の辺上に(b-1) 個の碁石が、a 組並ぶと考えると、必要な碁石の個数は、 $(b-1) \times a = ab$ -a (個) となる。
 - ②正 n 角形の辺上に(n-1) 個の碁石が、n 組並ぶと考えると、必要な碁石の個数は、 $(n-1) \times n = n^2 n$ (個)となる。同様に、正(n+2) 角形の辺上に $\{(n+1)-1\}$ 個の碁石が、(n+2) 組並ぶと考えると、必要な碁石の個数は、 $\{(n+1)-1\} \times (n+2) = n(n+2) = n^2 + 2n$ (個)と表される。このとき、 $(n^2-n) = (n^2+2n) 24$ より、n=8となる。
- (9)①「10の十字」は次のようになる。

	10	
11	13	15
	16	

よって、その和は、

10 + 11 + 13 + 15 + 16 = 65

②「nの十字」は次のようになる。

	n	
n+1	n+3	n+5
	n+6	

よって、その和は、

n + (n+1) + (n+3) + (n+5) + (n+6) = 5n + 15 (10(1) $\lceil n \mathcal{O} + \hat{\gamma} \rceil$ は次のようになる。

$$\begin{array}{|c|c|c|c|}
\hline
n \\
n+1 & n+3 & n+5 \\
\hline
n+6 \\
\end{array}$$

よって、その和は、

n + (n+1) + (n+3) + (n+5) + (n+6) = 5n + 15

5a + 15 = 225

a = 42

次に、m段目の一番右の数は、5m-4と表すことができる。また、 $\langle 規則 \rangle$ より、偶数段目には偶数のみ、奇数段目には奇数のみが記入される。42は 偶数なので

5m-4の m に偶数を代入して考えるとよい。

m = 80 とき、 $5 \times 8 - 4 = 36$

m = 10のとき、 $5 \times 10 - 4 = 46$

よって、10段目の一番左の数は10、一番右の数は46となるので、42が初めて現れるのは10段目となる。

P. 16

9 <解答例>

(1) ア 4 イ 12 ウ 16 (2) エ 10 オ 120

 $\frac{a}{2} + 6a$

(3) $6b - 2 \text{ (cm}^3)$

<考え方・解き方>

(2) Cを2個重ねると4番目,3個重ねると6番目,4

個重ねると§番目……,となるから,逆に20番目の直方体は10個重ねてある。よって,エ=10となる。 C は12cm³で,これが10個重ねてあるので,その体積は12×10=120(cm³)で,オ=120である。

a 番目の直方体は C が $\frac{a}{2}$ 個重ねてあるので、その体積は、 $12 \times \frac{a}{2} = 6a \text{ (cm}^3)$ 。よって、 $n = \frac{a}{2}$ 、+ = 6a となる。

(3) b の数とできる立体の体積の関係は、次のようになる。

b 番目 1 3 5 7 9 …											
体積(cm³)	4	16	28	40	52	}					
	1	$2\overline{1}$	$\widetilde{2}$								

表のようにbが2増えると体積が12増えるから、bが1増えると体積は6増えると考えて、次のような関係式ができる。

$$b$$
 番目の体積 = $4 + 6(b-1)$
= $6b - 2$ (cm³)

P. 17

10 <解答例>

(1) 9段 (2) 7n-19(段) (3) n=12

<考え方・解き方>

(1)1の旗を4まで持っていくために3段のぼり,2の 旗を運ぶために2段降り,2段のほる。3の旗を運 ぶために1段降り,1段のほる。よって,

$$3 + (2 + 2) + (1 + 1) = 9$$
 (段)

- (2)1の旗をnまで持っていくために(n-1)段のほり、2の旗をnまで持っていくために(n-2)段降り、(n-2)段のぼる。
 - 3の旗をnまで持っていくために(n-3)段降り、(n-3)段のほる。

4の旗をnまで持っていくために(n-4)段降り、(n-4)段のほる。よって、

$$(n-1) + 2(n-2) + 2(n-3) + 2(n-4)$$

= $7n - 19$ (段)

(3)(2)より、 $1 \sim 4$ の旗を5の旗の立っている段に集めるのにのぼり降りした段数の合計は、(2)の式にn=5を代入して、

 $7 \times 5 - 19 = 16(段)$

よって、5の段より上にある旗を運ぶために移動した段数は.

72-16=56(段)

5の段より上にある旗を運ぶには、1段のぼり、1 段降りる、2段のぼり、2段降りる、……のくり返 しだから、和が56になるまでを調べると、

 $(1+1) + (2+2) + \cdots + (7+7) = 56$

よって、5の段より7段上までで56段移動すること になるから、5+7=12(段)となる。

P. 18

11 <解答例>

- (1) ① 6個 ② 13.5cm (2) 0.5n + 7.5 (cm)
- (3) 青9個,白17個,赤9個

く考え方・解き方>

(1)①青・白・白・赤の4個で1グループをつくって いるから.

 $12 \div 4 = 3(グループ)$

1グループに白は2個含まれるので、

 $2(個) \times 3(グループ) = 6(個)$

②1個目の8cm に, 残り11個が重なっていると考えて.

 $8 + 0.5 \times 11 = 13.5$ (cm)

(2)(1)②より、n個重ねるときの高さは、

$$8+0.5 \times (n-1)$$

= $8+0.5n-0.5$
= $0.5n+7.5$ (cm)

(3)高さが40cm のときは、コップが何個あるかを調べる。(2)より、

$$0.5n + 7.5 = 40$$

n = 65 (個)

次に,この65個に青,白,赤が何個含まれるかを 調べる。(1)①と同様に.

$$65 \div 4 = 16 \cdots 1$$

よって、4 個のグループが16グループできて1 個余るから、

青
$$\rightarrow 1 \times 16 + 1 = 17(個)$$

白 $\rightarrow 2 \times 16 = 32(個)$
赤 $\rightarrow 1 \times 16 = 16(個)$

同様に、高さが22.5cm のときも調べると、

$$0.5n + 7.5 = 22.5$$

 $n = 30$

よって,

$$30 \div 4 = 7 \cdots 2$$

よって.

青 →
$$1 \times 7 + 1 = 8$$
(個)
白 → $2 \times 7 + 1 = 15$ (個)
赤 → $1 \times 7 = 7$ (個) ···(イ)

(ア)、(イ)より高さを40cm にしたときと、22.5cm にしたときの、3 色のコップの個数がわかったので、それぞれをひいて、22.5cm から40cm の間に含まれる3 色のコップの個数を求める。

青 → 17-8=9(個)

白 → 32-15=17(個)

赤 → 16-7=9(個)

P. 19

12 <解答例>

- (1) ア 14 イ 2
- (2) \Rightarrow 2n+6 \pm 6n+2

オ n番目の図形の周の長さの和は、

$$(2n+6) + (6n+2) = 8n+8$$

=8(n+1)

n+1は自然数だから、8(n+1)は8の倍数である。

(3) a = 52, b = 18 a = 67, b = 23

<考え方・解き方>

(2)表1より, 雄太の図形の周は, 8cm から始まって 2cm ずつ増えるから, n 番目の図形の周は,

$$8 + 2(n - 1) = 2n + 6$$
 (cm)

同様に、春子の図形の周は、8 cm から始まって6 cm ずつ増えるから、n 番目の図形の周は、

$$8 + 6(n - 1) = 6n + 2(cm)$$

(3)(2) \downarrow b.

雄太の a 番目の図形の周 = 2a+6 春子の b 番目の図形の周 = 6b+2 これらが等しいので、

 $2a + 6 = 6b + 2 \cdot \cdot \cdot (1)$

ここで、bを奇数として表2を整理すると、

図形の番号	1	3	5	 b
春子が作った図形	1	2	3	 $\frac{b+1}{2}$

番号が2増えるとタイル A が1枚増えるから、番号が1増えるとタイル A が $\frac{1}{2}$ 枚増えると考えて、(2)と

同様に、タイルAの枚数は、1枚から始まって $\frac{1}{2}$ 枚ずつ増えるので、b番の図形のタイルAの枚数は、

$$1 + \frac{1}{2}(b - 1) = \frac{b+1}{2}$$

となる。雄太の図形のa番目のタイルAの枚数はa枚だから

$$a = \frac{b+1}{2} \times 5 + 7$$

 $2a = 5b + 19 \cdots (2)$

また、bを偶数として表2を整理すると、

図形の番号	2	4	6	 b
春子が作った図形	1	2	3	 $\frac{b}{2}$

となり.

$$a = \frac{b}{2} \times 5 + 7$$
$$2a = 5b + 14 \cdots (3)$$

- (1), (2) \sharp b), a = 67, b = 23
- (1). (3) \sharp b), a = 52, b = 18

P. 20

13 <解答例>

(1) 12(2) 39(3) ①2a-3② a=32b=29<考え方・解き方>

(1)7番目の図は右のように なる。

		7	番	Ħ		
1	4	5	8	9	(12)	13
2	3	6	7	10	11	14

(2)右図のように, 10番目の数か

ら9番目の数を

ひくと19と20

				10₹	4				
1				9					
2	3	6	7	10	11	14	15	18	19

が残る。

(3) a 番目の表の数の方が5大きい場合は、例えば下の表のようなa=8、b=5のときである。

a = 8番目

1	4	5	8	9	12	13	16
2	3	3 6		7 10		14	15
h -	- 釆	Ħ			3	列多	13

よって、a番目の表の方が3列多くなるので、偶数番目の表は、右上が番数の2倍、奇数番目の表は右

下が番数の2倍であることを利用して他の枠に入る 数を一般式で表すと

a 悉日

от р										
1	4	5	8	9	12	B	,	2a-4	2a-3	2a
2	3	6	7	10	11	B)	2a - 5	2a-2	2a - 1
b 番	目								3列多い	,

1 4 $\frac{3}{2}$ 2b-2 2b-12 3 3 2b-3 2b

条件より、 の差が5だから、

$$(2a-3) - (2b-2) = 5$$

 $a-b=3\cdots (1)$

3列多い部分の和が369だから、

$$2a + (2a - 1) + (2a - 2) + (2a - 3) + (2a - 4) + (2a - 5) = 369$$

 $12a - 15 = 369 \cdot \cdot \cdot (2)$

①、②より、

$$a = 32$$
, $b = 29$

P. 21

14 <解答例>

- (1) ア 19 イ 12
- (2) ①ウa+1 エa+3 オa+4

a+2は自然数だから、6(a+2)は6の倍数で ある。

② a=73 9行目から25行目まで

<考え方・解き方>

各行の左の数は1から始まって3ずつ増えていくの

$$n$$
 行目の左の数 = $1 + 3(n-1)$
= $3n-2$ \longrightarrow ☆

同様に、右の数は50から始まって3ずつ増えていくの T.

$$n$$
 行目の右の数 = $50 + 3(n-1)$
= $3n + 47$ — \bigstar

図にまとめると,

(1)☆にn=7を代入すると.

 $3 \times 7 - 2 = 19$

12行目の左の数は☆より、

 $3 \times 12 - 2 = 34$

13行目の左の数は☆より.

 $3 \times 13 - 2 = 37$

よって、12行目までは各行に1個ずつ35が含まれ、 13行目からは35は含まれなくなる。

(2)(2)(1)より、cd-ab=6(a+2)だから、

$$6(a+2) = 450$$

a = 73

8行目の右の数は★より,

 $3 \times 8 + 47 = 71$

9行目の右の数は★より.

 $3 \times 9 + 47 = 74$

よって、73は9行目で初めて出てくる。

また、25行目の左の数は☆より、

 $3 \times 25 - 2 = 73$

26行目の左の数は☆より。

 $3 \times 26 - 2 = 76$

よって、73は26行目から出てこなくなる。

P. 22

15 <解答例>

- (1) ① 6
- ② 7列
- (2) ① $\frac{n+1}{2}$ ② n = 53, 31 § I

<考え方・解き方>

(1)12列目までを表にまとめると、下の図のようになる。

	1 列 目	2 列 目	3 列 目	4 列 目	5 列 目	6 列 目	7 列 目	8 列 目	9 列 目	10 列 目	11 列 目	12 列 目
1段目	0	0	0	1	0	0	0	1	0	0	0	1
2段目	0	0	1	0	0	1	0	0	1	0	0	1
3段目	1	0	1	0	1	0	1	0	1	0	1	0
合計	1	0	2	1	1	1	1	1	2	0	1	2

(2)列と3段目に並んでいる数の合計を表にまとめる と、次のようになる。

①3段目の数の合計は、列に1を加えて2で割った 数になるから、 n 列目までの合計は、

$$(n+1) \div 2 = \frac{n+1}{2} \cdots \bigstar$$

②★=27のときだから、

$$\frac{n+1}{2} = 27$$
 $n = 53$

また、1段目は4列目ごとに0001をくり返し、2 段目は3列目ごとに001をくり返し、3段目は2 列目ごとに10をくり返すので、4、3、2の最小 公倍数の12列目ごとに同じ合計をくり返す。53÷ $12 = 4 \cdots 5$ なので、12列のグループが 4 グループ できて5列のこる。12列までに合計が1になるの が(1)の表より7列あり、残りの5列の中に3列あ るので.

$$4 \times 7 + 3 = 31 (5)$$

P. 23

16 <解答例>

- (1) 金額1155円, 重さ31g (2) 13n-8(g)
- (3) 8331円

<考え方・解き方>

入れた硬貨	1円	50円	1円	500円	1円	50円	1円	500円	1円	50円
枚数の合計(枚)	1	2	3	4	5	6	7	8	9	10
金額の合計(円)	1	51	52	552	553	603	604	1104	1105	1155
重さの合計(g)	1	5	6	13	14	18	19	26	27	31

(1)表より、10枚入れたときは1155円で31gとなる。 (2)50円の枚数と重さの関係を表にすると.

50円の枚数(枚)	1	2	3		\overline{n}
重さの合計(g)	5	18	31	•••	?
+ 12 + 12					

+13 + 13

1 枚増えるごとに重さは13g ずつ増えているから n 枚のときの重さは、

$$5+13(n-1)=13n-8(g)$$

(3)硬貨を4枚入れたとき重さの合計は13gになり、あとは4枚ごとに13gずつ増えていく。4枚で13gのグループが200gになるまでに何グループあるかを見つければよいので、

$$200 \div 13 = 15 \cdots 5$$

図に表すと.

① ② … ⑤

よって、15グループと1 円、50円で200g になる。1 グループで552円だから、

 $552 \times 15 + 1 + 50 = 8331 (\mbox{H})$

P. 24

17 <解答例>

- (1) ア 54、イ 4 (2) $6n^2$ (個) (3) n=11 <考え方・解き方>
- (1) 図1の正六角形をS, 1辺が3cmの正六角形を Tとすると、2つの正六角形の相似比は、

S: T=1:3

面積比は相似比の2乗だから,

Sの面積:Tの面積=12:32=1:9

Sは正三角形6個でできているので、面積を6とすると、

6:Tの面積=1:9

Tの面積=54

よって、Tは54個の正三角形が必要である。

(2)1 辺が ncm の正六角形を N とすると, (1)と同様に,

Sの面積:Nの面積=12:n2

6 : Nの面積 = 1:n²

N の面積 = 6n²

よって、Nは $6n^2$ (個)の正三角形が必要である。

(3)(2)と同様に, 1 辺が n+1(cm)の正六角形をつくる のに必要な正三角形の個数は,6(n+1)²(個)なので.

$$6(n+1)^2-6n^2=138$$

 $(n+1)^2 - n^2 = 23$

 $n^2 + 2n + 1 - n^2 = 23$

2n + 1 = 23

n = 11

P. 25

18 <解答例>

- (1) ア 17, イ 30 (2) 29, 59, 89
- (3) ウ 6*n*-1, エ 2, オ 16, カ 15 (4)80個 **<考え方・解き方>**
- (1)2と3の最小公倍数は、

 $2 \times 3 = 6$

なので、1行目、2行目に共通する自然数は6の倍

数-1だとわかる。 アはその3番目なので、

 $|7| = 6 \times 3 - 1 = 17$

また、 ①は、2、3、5の最小公倍数なので、

 $\boxed{1} = 2 \times 3 \times 5 = 30$

(2)(1)より, 1 行目, 2 行目, 3 行目に共通する自然数は30の倍数-1だとわかる。

よって、答えとなる3つの自然数は、

 $30 \times 1 - 1 = 29$

 $30 \times 2 - 1 = 59$

 $30 \times 3 - 1 = 89$

となる。

 $6n-1\cdots$

と表せる。また、共通する自然数のうち、最も小さい2けたの数は11なので、

6n - 1 = 11

 $n = 2 \cdots \square$

加えて、 $100 \div 6 = 16$ あまり 4 より、共通する自然数のうち、最も大きい 2 けたの数は、

 $6 \times 16 - 1 = 95$

で、そのときのnの値は16(因)だと分かる。

工、 オより、 求める自然数の個数は、

 $16 - 2 + 1 = 15 \cdots$

である。

(4×2)と下の数列より, 1, 2行目に共通する自然数の中で.

5, 11, 17, 23, 29, 35, 41, 47, 53, 59… 3 行目とも共通するものは, 5 個中 1 個だとわかる。 トゥエ

 $100 - (100 \div 5) = 80$

第3講座 方程式

P 26

1 <解答例>

- (1) x = -3
- (2) x = -2
- (3) x = 5

- $(4) \quad x = 6$
- $(5) \quad x = 3$
- (6) x = -5
- $(7) \quad x = -2$
- (8) x = 3
- (9) x = -6

(10) x = -2

<考え方・解き方>

- (1) 6x + 4 = 3x 5
 - 6x 3x = -5 4
- (2) x-1=3x+3x - 3x = 3 + 1
- 3x = -9x = -3
- -2x = 4x = -2
- (3) 1.3x 2 = 0.7x + 1
- (4) 5x = 3(x+4)5x = 3x + 12
- 13x 20 = 7x + 1013x - 7x = 10 + 20
- 5x 3x = 12
- 6x = 30
- 2x = 12
- x = 5
- x = 6
- (5) $\frac{2x+9}{5} = x$
- (6) x-4=5x+16x - 5x = 16 + 4
- 2x + 9 = 5x
- -4x = 202x - 5x = -9
- -3x = -9
- x = -5
- x = 3(7) 2x+7=1-x
- (8) 3x-7=8-2x
- 2x + x = 1 7
- 3x + 2x = 8 + 75x = 15
- 3x = -6x = -2
- x = 3
- (9) 5x + 8 = 3x 45x - 3x = -4 - 8
- 5x + x = 6 18

(10) 5x + 18 = 6 - x

- 2x = -12
- 6x = -12
- x = -6
- x = -2

P. 26

2 <解答例>

- (1) $(x, y) = (\frac{1}{2}, -1)$ (2) (x, y) = (7, 3)
- (3) (x, y) = (2, -1) (4) (x, y) = (1, 3)
- (5) $(x, y) = (1, -\frac{1}{2})$ (6) (x, y) = (-1, 2)
- (7) (x, y) = (3, -2)
- (8) (x, y) = (-1, 3)
- (9) (x, y) = (5, -1)
- (10) (x, y) = (8, -2)

<考え方・解き方>

- (1) $(4x + y = 1 \cdots \widehat{1})$ $2x-3y=4\cdots (2)$
- (2) $\int 3x + 2y = 27 \cdots (1)$ $5x - 4y = 23 \cdots (2)$
- ①より.
- $(1) \times 2 + (2) \downarrow h$.
- $y = 1 4x \cdot \cdot \cdot (1)'$
- 11x = 77
- これを②に代入して.
- x = 7
- これを①に代入して.
- 2x-3(1-4x)=4
- 2x-3+12x=414x = 7
- 21 + 2y = 272y = 6
- y = 3
- これを①に代入して.

- (1) x = 4. 8
- 3 <解答例>
 - (3) $x = \frac{1 \pm \sqrt{5}}{2}$

- $y = 1 4 \times \frac{1}{2}$ = -1(3) $(2x-y=5 \cdots 1)$ $3x + 4y = 2 \cdots (2)$
- $(4) (3x + y = 6 \cdots 1)$
- ①より.
- $-x+3y=8\cdots(2)$ ② より.
- $y = 2x 5 \cdot \cdot \cdot (1)'$
- $x = 3y 8 \cdots (2)'$ これを①に代入して、
- これを②に代入して.
- 3(3y-8)+y=6
- 3x+4(2x-5)=23x + 8x - 20 = 2
- 9y 24 + y = 6
- 11x = 22
- 10 y = 30y = 3
- x = 2これを①′に代入して,
- これを②′に代入して, x = 9 - 8
- y = 4 5y = -1
- = 1
- $(5) (2x-9y=5 \cdots 1) (6) (x+2y=3 \cdots 1)$ $-x+3y=-2\cdots 2$
 - $3x y = -5\cdots(2)$
 - $(1) + (2) \times 3 \downarrow 0$.
- $(1) + (2) \times 2 \sharp h$.
- -x = -1
- 7x = -7x = -1
- x = 1x=1を①に代入して、
- x = -1を①に代入して、 -1+2y=3
- $2 \times 1 9y = 5$ -9y = 3
- 2y = 4y=2
- $y = -\frac{1}{2}$
 - (8) $y = 6x + 9 \cdots 1$
- $\int 5x + 3y = 9 \cdots 2$
 - $4x + 3y = 5 \cdots (2)$ ①を②に代入して.
- ①より. $x = 11 + 4y \cdot \cdot \cdot 1$

 $(7) (x-4y=11\cdots 1)$

- 4x + 3(6x + 9) = 5
- ① を②に代入して,
- 4x + 18x + 27 = 5
- 5(11+4y)+3y=955 + 20 y + 3 y = 9
- 22x = -22x = -1
- 23y = -46 これを①に代入して、 $y = 6 \times (-1) + 9$
- y = -2 e(1)' に代入して、 $x = 11 + 4 \times (-2)$
 - =11-8
 - = 3
- $(10) (0.2x + 0.3y = 1 \cdots (1)$ x-14=3y ··· 2

= 3

 $2x+9y=1\cdots (2)$ $(1) \times 2 - (2) \sharp \mathfrak{h}$.

x + 3 = 8

x = 5

 $(9) (x-3y=8 \cdots 1)$

- -15y = 15
- $x-3y=14\cdots(2)'$ $(1) \times 10 + (2)' \$ \$ $\$ \$ $\$ \$ $\$ \$.
- y = -1①に代入して.
- 3x = 24
- x = 8

② L h.

- これを②に代入して.
 - 8 14 = 3 y
 - 3y = -6y = -2

- (2) x = 0, -4
- (4) $x = \frac{-5 \pm \sqrt{13}}{6}$

(5)
$$x = \frac{-5 \pm \sqrt{21}}{2}$$
 (6) $x = \frac{3 \pm \sqrt{13}}{2}$

(6)
$$x = \frac{3 \pm \sqrt{13}}{2}$$

(7)
$$x = \frac{1 \pm \sqrt{3}}{2}$$

(7)
$$x = \frac{1 \pm \sqrt{37}}{2}$$
 (8) $x = \frac{-7 \pm \sqrt{41}}{4}$

(9)
$$x = \frac{-5 \pm \sqrt{33}}{4}$$
 (10) $x = \frac{-7 \pm \sqrt{17}}{8}$

(10)
$$x = \frac{-7 \pm \sqrt{17}}{8}$$

<考え方・解き方>

$$(1)(x-6)^2 = 4$$

 $x-6=\pm 2$

$$(2) x^2 = -4x$$
$$x^2 + 4x = 0$$
$$x(x+4) = 0$$

$$x = 6 \pm 2$$
$$x = 4. 8$$

$$x = 0, -$$

(3)式を整理すると、

$$x^2 - x - 1 = 0$$

解の公式を使って.

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times (-1)}}{2 \times 1}$$
$$= \frac{1 \pm \sqrt{1 + 4}}{2}$$
$$= \frac{1 \pm \sqrt{5}}{2}$$

$$(4)3x^2 + 6x = x - 1$$

$$(5) \quad x^2 + 7x = 2x - 1$$

$$3x^2 + 5x + 1 = 0$$

$$x^2 + 5x + 1 = 0$$

$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 3}}{2 \times 3}$$
$$-5 \pm \sqrt{25 - 12}$$

$$3x^{2} + 5x + 1 = 0 x^{2} + 5x + 1 = 0$$

$$x = \frac{-5 \pm \sqrt{5^{2} - 4 \times 3 \times 1}}{2 \times 3} x = \frac{-5 \pm \sqrt{5^{2} - 4 \times 1 \times 1}}{2 \times 1}$$

$$= \frac{-5 \pm \sqrt{25 - 12}}{6} = \frac{-5 \pm \sqrt{21}}{2}$$

$$=\frac{-5 \pm \sqrt{13}}{6}$$

(6)
$$x^2 - 3x - 1 = 0$$

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times (-1)}}{2 \times 1}$$
$$= \frac{3 \pm \sqrt{9 + 4}}{2}$$
$$= \frac{3 \pm \sqrt{13}}{2}$$

$$(7)(x+3)(x-3) = x$$

$$x^2 - 9 = x$$

$$x^2 - x - 9 = 0$$

$$x^{2} - x - 9 = 0$$

$$x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4 \times 1 \times (-9)}}{2 \times 1}$$

$$= \frac{1 \pm \sqrt{1 + 36}}{2}$$

$$=\frac{1\pm\sqrt{1+36}}{2}$$

$$=\frac{1\pm\sqrt{37}}{2}$$

$$(8)2x^2 + 7x + 1 = 0$$

$$x = \frac{-7 \pm \sqrt{7^2 - 4 \times 2 \times 1}}{2 \times 2}$$
$$= \frac{-7 \pm \sqrt{49 - 8}}{4}$$
$$= \frac{-7 \pm \sqrt{41}}{4}$$

$$(0)2x^2 + 5x - 1 = 0$$

$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times (-1)}}{2 \times 2}$$
$$= \frac{-5 \pm \sqrt{25 + 8}}{4}$$
$$= \frac{-5 \pm \sqrt{33}}{4}$$

$$(10)4x^{2} + 7x + 2 = 0$$

$$x = \frac{-7 \pm \sqrt{7^{2} - 4 \times 4 \times 2}}{2 \times 4}$$

$$= \frac{-7 \pm \sqrt{49 - 32}}{8}$$

$$=\frac{7-\sqrt{43}}{8}$$

$$=\frac{-7\pm\sqrt{17}}{8}$$

P. 28

4 〈解答例〉

- (1) ア3 イ36 (2) ア2 イ5 ウ-2 エ3
- (3) a = 16, x = -5 (4) イ. ウ
- (5) 次のいずれかとなる。

$$7 = 9$$
 $1 = 2$ $2 = 7$ $2 = 7$ $2 = 7$ $2 = 7$

- (6) $7.14 \quad 7.2 \quad (7) \quad 4a + 3b < 1700$
- (8) (1) a = 10 (2) 3

$$(9) \quad \mathcal{T} \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

イ $\frac{c}{a}$ を右辺に移項し、両辺に $\left(\frac{b}{2a}\right)^2$ を加えると、

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = -\frac{c}{a} + \left(\frac{b}{2a}\right)^{2}$$
$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$
$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^{2} - 4ac}{4a^{2}}}$$
$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^{2} - 4ac}}{2a}$$

<考え方・解き方>

- $(1)x^2+6x+\square$ の□にどんな数がはいれば $x^2+6x+\square$ $=(x+\triangle)^2$ の因数分解ができるかを考える。具体的 には x の係数がどんな数でも x の係数の半分を 2 乗した数がはいることになる。つまり、6の半分で 3. 302乗で9がはいれば $x^2+6x+9=(x+3)^2$ と因数分解できる。よって(⑦)2=9であるから, ア=3となる。ア=3が見つけられれば、後は計算 の流れに従って計算していく。

$$ax + by = 11 \cdots 1$$

①の解が、x=3、y=1であればよいから、①に代 入すると.

$$3a+b=11\cdots 2$$

②のa, bに1以外の自然数をあてはめて、順にみ つけていくと.

の2組しかない。よって、(P, 1) = (2, 5), (3, 2)のいずれかを答える。

r = 2, 1 = 5のとき,

$$2x + 5y = 11$$

となるから、次の場合などが考えられる。

r = 3. $l = 200 \ge 3$.

3x + 2y = 11

となるから、次の場合などが考えられる。

(3) x = 3を式に代入すると.

$$(3+1)^2 = a$$

$$4^2 = a$$
 $a = 16$

よって、もとの方程式は、

$$(x+1)^2 = 16$$

$$x + 1 = \pm 4$$

$$x = -1 \pm 4$$

他の解x=-5

$$(4)$$
7 $x^2 - 5x - 6 = 0$

$$(x-2)^2 = 1$$

$$(x+1)(x-6)=0$$

$$x-2=\pm 1$$
$$x=2\pm 1$$

$$x = -1$$
, 6

$$x = 1$$
. 3

ウ
$$x(x-1) = 4(x-1)$$
 エ $(x+1)(x-1) = 3$
 $x^2 - x = 4x - 4$ $x^2 - 1 = 3$

$$x^2 - 1 = 3$$

$$x^2 - 5x + 4 = 0$$

$$x^2 = 4$$

$$(x-1)(x-4) = 0$$

$$x = \pm 2$$

x = 1, 4

(5) イと ウを使って等式をつくると.

$$5 \times \boxed{1} + 3 \times \boxed{\dot{7}} = 31$$

この関係を満たす、 イ、 ウを表にすると、

となる。よって、 1+ ウ= アだから、

$$(\vec{7} \cdot \vec{4} \cdot \vec{7}) = (9, 2, 7), (7, 5, 2)$$

 $(6) a = 7 e a^2 - 5 a$ に代入すると.

$$a^{2} - 5a = 7^{2} - 5 \times 7$$

$$= 49 - 35$$

$$= 14$$

また, $a^2-5a=14$ を解くと.

$$a^2 - 5a - 14 = 0$$

$$(a-7)(a+2)=0$$

よって、a=7、-2

(7)代金の合計<1700だから、

 $a \times 4 + b \times 3 < 1700$

4a + 3b < 1700

(8)(1) x = 4を式に代入して、

$$(4+1)\times(4-2)=a$$

a = 10

② a = 10だから.

$$(x+1)(x-2) = 10$$

$$x^2 - x - 12 = 0$$

$$(x-4)(x+3)=0$$

$$x = 4$$
, -3

よって、もう一つの解はx=-3

(9) イ $\frac{c}{a}$ を移項して、

$$x^2 + \frac{b}{a}x = -\frac{c}{a}$$

 $\frac{b}{a}$ の半分の2乗を両辺にたして

$$x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2$$

左辺を平方の形にして.

$$\left(x + \frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

よって.

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

P. 30

5 <解答例>

- (1) 左の皿に3個のせた。
- (x+y=10)連立方程式 $\left\{ \frac{x}{12} + \frac{y}{4} = \frac{10}{12} + \frac{10}{60} \right\}$

走った道のり9km. 歩いた道のり1km

- (3) 11ページ
- (4) 方程式 $(x+3)^2-21=10x$ xの値 −2.6
- (5) 方程式 $x+x^2=3$, x の値 $\frac{-1\pm\sqrt{13}}{2}$
- (6) (1)1340 (2)x = 27, y = 12

<考え方・解き方>

(1)●をx(g), ◎をy(g)とすると○は1gだから. 1図より.

$$2x = y + 1 \cdots (1)$$

2図より.

$$3x+1=2y\cdots (2)$$

①、②より、

$$x = 3(g), y = 5(g)$$

よって、3図で、

よって, 左の皿に○(1g)を3個のせればよい。

(2)走った道のりをxkm、歩いた道のりをykm とおく。

	走った	歩いた	合計
道のり	xkm	ykm	10km
速さ	時速12km	時速 4 km	*
時間	<u>x</u> 時間	<u>y</u> 時間	10 + 10 時間

$$\begin{cases} x+y=10\\ \frac{x}{12} + \frac{y}{4} = \frac{10}{12} + \frac{10}{60} \end{cases}$$

この連立方程式を解いて、(x, y) = (9, 1)

(3)月曜日にxページ読んだとすると、次の表より、最 も多く読んだのは木曜日のx+5ページだから、土曜 日は2(x+5)ページとなる。

曜日	月	火	水	木	金	土
前日との差		-2	+4	+3	-1	
読んだページ	x	x-2	x+2	x+5	x+4	2(x+5)

6 日間の読んだページの平均が16ページだから、x+(x-2)+(x+2)+(x+5)+(x+4)+2(x+5) $=16\times6$

これを解いて、x=11

(4)図の操作にしたがって式をつくると、

$$(x+3)^2-21=x\times 10$$

整理して解くと.

$$x^2 - 4x - 12 = 0$$

$$(x+2)(x-6)=0$$

$$x = -2$$
, 6

(5)x と x^2 の和が 3 になるので、 $x+x^2=3$ という式ができる。これを解くと、

$$x + x^2 = 3$$

$$x^2 + x - 3 = 0$$

$$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-3)}}{2 \times 1}$$
$$= \frac{-1 \pm \sqrt{13}}{2}$$

 $(6)(1)2019 - 9 = 2010(\checkmark)$

$$2010 \times \frac{2}{3} = 1340 (\dot{7})$$

②問題より.

$$\begin{cases} (x-9) \times \frac{2}{3} = y \\ (y-9) \times \frac{2}{3} = 2 \end{cases}$$

これを解いて

$$x = 27$$
. $y = 12$

P. 32

6 <解答例>

- (1) ①15-x-y(回) ②x-3y+15(点)
- (2) 花子6回 太郎4回

<考え方・解き方>

		勝(2点)	負(-2点)	あいこ(1点)
花	子	$x \square$	$y \square$	$15-x-y$ \square
太	郎	<i>y</i> 🗉	$x \square$	$15-y-x$ \square

- (1)①15回じゃんけんをしているので、あいこの回数は 上の表のようになる。
 - ②表より,

$$x \times 2 + y \times (-2) + (15 - x - y) \times 1$$

= $2x - 2y + 15 - x - y$
= $x - 3y + 15$ (点)

(2) 花子の得点が 9 点だから、(1)の②より、

$$x-3y+15=9\cdots(7)$$

太郎が1点だから.

$$y \times 2 + x \times (-2) + (15 - y - x) \times 1 = 1$$

 $2y - 2x + 15 - y - x = 1$

$$-3x + y + 15 = 1 \cdots (\ \ \ \)$$

(ア), (イ)より,

$$x = 6$$
, $y = 4$

P. 33

7 <解答例>

- (1) 128cm^3 (2) ① $74x \ 1\frac{1}{2}x^2 16x + 128$
- ウ 68 エ 256 ② 88cm³

<考え方・解き方>

(1)底面は 1 辺が4 cm の正方形になる。

$$4 \times 4 \times 8 = 128 \text{ (cm}^3)$$

$$(2)(1)$$
 $V = 2^2 \times x = 4x \rightarrow 7$

$$V' = \left(4 - \frac{x}{4}\right)^2 \times 8 = 8\left(\frac{x^2}{16} - 2x + 16\right)$$
$$= \frac{1}{2}x^2 - 16x + 128 \rightarrow 4$$

$$V: V' = 4x: \left(\frac{1}{2}x^2 - 16x + 128\right) = 2:9$$

$$4x \times 9 = 2 \times \left(\frac{1}{2}x^2 - 16x + 128\right)$$

$$36x = x^2 - 32x + 256$$

$$x^2 - \underline{68}x + \underline{256} = 0$$

(2)
$$x^2 - 68x + 256 = 0$$

$$(x-4)(x-64)=0$$

$$x=4, 64 \quad 0 < x < 8 \pm 0, x=4$$

$$V + V' = 4 \times 4 + 9 \times 8$$
$$= 88 \text{ (cm}^3)$$

第4講座 関数

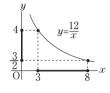
P. 34

1 <解答例>

- (1) $\frac{3}{2} \le y \le 4$ (2) -2
- (3) $y = \frac{10}{x}$
- (4) 712 16 (5) 7500 14250 (6) $y = \frac{6}{3}$
- (7) y=3 (8) ① a=12
- $2\frac{3}{4} \leq m \leq 3$
- (9) \mathcal{T} , \mathcal{I} , \mathcal{I} (10) $y = \frac{6}{5}$

<考え方・解き方>

 $(1) y = \frac{a}{x}$ に x = 6, y = 2を代入 x すると、 $2=\frac{a}{6}$ 、a=12、よって、比例定数は12なの で、図のようにグラフに表 すと、x=3のときy=4、 x=8のとき $y=\frac{3}{2}$ となり,



yの変域は $\frac{3}{2} \le y \le 4$ である。

(2)2点A, Bのそれぞれの座標は(2,8),(4,4)とな るので、この2点を通る直線の傾きは、

傾き =
$$\frac{4-8}{4-2}$$

$$= -\frac{4}{2}$$

$$= -2$$

(3) $y = \frac{a}{x}$ に x = 2, x = 5 をそれぞれ代入すると,

$$x = 20$$
 $\succeq \stackrel{*}{\underset{\sim}{\triangleright}}$, $y = \frac{a}{2} \cdots (1)$

$$x=50 \ge 3$$
, $y=\frac{a}{5}$...2

(1) = (2) + 3\$ (1),

$$\frac{a}{2} = \frac{a}{5} + 3$$

$$5a = 2a + 30$$

よって、
$$y=\frac{10}{x}$$

(4)①に x=3 を代入すると,

$$y = \frac{4}{3} \times 3$$

よって. ①. ②の交点の座標は(3.4)で. ②のグラ フはこの点を通るので、a=xy より、 $a=3\times 4=12$ 、 イに入る数を求めるには、xy=12より、積が12と なるxとyの自然数の組み合わせを考える。

(x, y) = (1, 12)(2, 6)(3, 4)(4, 3)(6, 2)(12, 1)以上の6組である。

(5)2人の出発してからの時間をx分、走った距離を ym とすると、一郎のグラフを表す式は、1000m を 4分で走っているので、

同様にして, 大輔のグラフを表す式は,

x=10をそれぞれに代入して、

一郎: $y = 250 \times 10 = 2500$

大輔: $y = 200 \times 10 = 2000$ より、

 $2500 - 2000 = 500 \rightarrow 7$

スタート地点から $\boxed{7}$ m 地点を一郎がt分後に通 過したとすると、大輔は $t+4\frac{1}{4}$ 分後に通過するので、

$$250 t = 200 \left(t + 4 \frac{1}{4} \right)$$
 \$\text{ } 1),

$$t = 17$$

よって、250×17=4250→イ

(6)反比例の式を $y = \frac{a}{r}$ とすると,

点Aのy座標=
$$\frac{a}{3}$$

点 B の
$$y$$
 座標 = $\frac{a}{-1}$ = $-a$

この差が8だから.

$$\frac{a}{3} - (-a) = 8$$

よって、求める式は $y = \frac{6}{x}$ である。

(7)反比例なので、xy=一定だから、

$$2 \times 9 = 6 \times y$$

$$6y = 18$$

$$y = 3$$

(8)① $y = \frac{a}{x}$ より a = xy これに(2, 6)を代入して,

$$a = 2 \times 6 = 12$$

②y = mx に(2, 6)を代入して,

$$m = 3 \cdots i$$

①より、12=xy にx=4を代入して、

$$12 = 4y$$

y=3

よって、B(4, 3)なので、これをy=mx に代入

3 = 4m

$$m = \frac{3}{4} \cdots ii$$

したがって、i, iiより、 $\frac{3}{4} \le m \le 3$

- (9)xの値が決まると、それにともなってyの値も1つに決まるのが関数であり、ウ、オはこの定義を満 たしていない。
- (10) 反比例なので、xy=一定だから、

$$2 \times 3 = 5 \times y$$

$$5y = 6$$

$$y=\frac{6}{5}$$

P. 37

2 <解答例>

- (1) ①時速30km ②24分後
- (2) ①午前10時26分40秒 ②10.8≤a<13.5
- (3) ①2420円 ②880円

- (4) ①5080円 ②1200<a<1320
- (5) ①妹:毎秒1m, 姉:毎秒1.25m ②30秒後
- (6) ①60秒後 ② a = 5.5. b = 0.8
- (7) ①每分220m ②22分40秒後
- (8) ① a=3 ②15分後 ③1≤b<4
- (9) ①ウ ②2
- (10) (1) (2) (2) (3) (4) (2)

<考え方・解き方>

(1)①グラフより、 $8 \text{ km } を16分(\frac{16}{60}$ 時間) で進むことが 分かるので、

$$8 \div \frac{16}{60} = 30$$
 (時速30km)

②大輔さんの式は、速さが時速15km なので、傾きは $\frac{15}{60} = \frac{1}{4}$

よって、
$$y = \frac{1}{4}x$$
… i

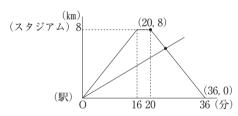
バスの式は2点(20,8),(36,0)を通るので、傾きは、

$$\frac{0-8}{36-20} = -\frac{1}{2}$$

求める式を $y = -\frac{1}{2}x + b$ とおき、(36, 0)を代入して、b = 18

よって、
$$y = -\frac{1}{2}x + 18$$
… ii

i, ii を連立方程式で解いて、(x, y) = (24, 6)したがって、(24, 6)



(2)①バスの直線の式はグラフより、(20, 9)、(35, 0)の 2 点を通ることがわかるので、

$$y = -\frac{3}{5}x + 21 \cdots i$$

大輔さんの式は、時速18km より、傾きは、 $\frac{18}{60}$ = $\frac{3}{10}$ 、また、グラフより(10, 0)を通ることがわかるので、求める式を $y = \frac{3}{10}x + b$ とおき、これに(10, 0)を代入して、

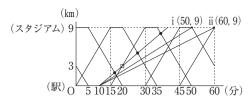
$$y = \frac{3}{10}x - 3\cdots ii$$

i, iiを連立方程式で解いて,

$$x = \frac{80}{3} \left(26 \frac{2}{3} \right)$$

 $\frac{80}{3} \left(26\frac{2}{3}\right)$ 分は26分40秒のことなので、

午前10時26分40秒



②上図より、条件を満たすには、50分から60分の間に大輔さんがスタジアムに到着すればよいことがわかる。到着するのが50分のとき、aの値は、

$$9 \div \frac{50 - 10}{60} = \frac{27}{2} (13.5) \cdots i$$

到着するのが60分のとき、aの値は、

$$9 \div \frac{60 - 10}{60} = \frac{54}{5} (10.8) \cdots ii$$

- (3)① 1 か月間の水の使用量が23m³のときの水道料金 は、400+40×10+120×10+140×3=2420円となる。
 - ②大輔さんが住んでいる市の1か月当たりの水道料金の基本料金をx円とする。このとき、大輔さんが住んでいる市で1か月間の水の使用量が $28m^3$ のときの水道料金は、 $x+80\times28=x+2240$ 円となる。また、美咲さんが住んでいる市で1か月間の水の使用量が $28m^3$ のときの水道料金は、 $400+40\times10+120\times10+140\times8=3120$ 円となる。よって、x+2240=3120より、

$$x = 880$$

したがって、大輔さんが住んでいる市の1か月当 たりの水道料金の基本料金は880円となる。

(4)① 1 か月間の水の使用量は xm³なので、ヒバリ市の水 道料金は、 $620+140\times10+170\times(x-20)$ (円)となる。

また、リンドウ市の水道料金は、 $900+110 \times x$ (円)

それぞれの市の水道料金が等しくなるので,

 $620+140\times10+170\times(x-20)=900+110\times x$ これを解いて、x=38(m³)となる。

x=38をリンドウ市の水道料金を表す式に代入すると

 $900+110\times38=5080(円)$ となる。

②基本料金a 円,使用量ごとの料金を1 m³につき80円,1 か月間の水の使用量はxm³なので,水道料金はa+80x(円)と表せる。よって,<条件>の1つ目の,水の使用量が10m³のとき,x=10を代入して, $a+80\times10=a+800$ (円)と表せる。このときのヒバリ市の水道料金は620+0=620(円)。リンドウ市の水道料金は, $900+110\times10=2000$ (円)。よって,水道料金はリンドウ市の水道料金2000円より高くなるように設定するので,

$$a + 800 = 2000 \, \text{L} \, \text{I})$$
,

$$a = 1200$$

よって、基本料金を1200円より高くする。 また、<条件>の2つ目の、水の使用量が30m³ のとき、x=30を代入して、 $a+80\times30=a+2400$ (円)と表せる。このときのヒバリ市の水道料金は $620+140\times10+170\times10=3720$ (円)。リンドウ市の水道料金は、 $900+110\times30=4200$ (円)。よって、水道料金はヒバリ市の水道料金3720円より安くなるように設定するので、

$$a + 2400 = 3720 \, \mbox{\c l} \, \ \ \ \ \ \ \ \)$$
 ,

$$a = 1320$$

よって、基本料金を1320円より安くする。 したがって、1200< a < 1320となる。

- (5) ①グラフより、妹は1往復50m を50秒で泳いでいる。よって、速さは50÷50=1 (m/秒)となる。姉は、1往復50mを40秒で泳いでいる。よって、速さは50÷40=1.25(m/秒)となる。
 - ②妹の式は、(25, 25)、(50, 0)を通るので、

傾きは
$$\frac{0-25}{50-25} = -\frac{25}{25} = -1$$

求める式をy = -x + bとおき, (50, 0)を代入して, b = 50

よって、
$$y = -x + 50$$
… i

姉の式は、(14,0)、(34,25)を通るので、

傾きは
$$\frac{25-0}{34-14} = \frac{25}{20} = \frac{5}{4}$$

求める式を $y = \frac{5}{4}x + b$ とおき, (14,0)を代入して,

$$b = -\frac{35}{2}$$

よって、
$$y = \frac{5}{4}x - \frac{35}{2}$$
… ii

i, iiを連立方程式で解いて,

$$(x, y) = (30, 20)$$

したがって、30(秒後)となる。

(6)① 2 回目にすれちがった時間は、姉と妹の直線の式をそれぞれ求め、その交点のx座標となる。よって、姉の $48 \le x \le 68$ での式は、(48, 25)、(68, 0)を通る直線より、

$$y = -\frac{5}{4}x + 85 \cdots i$$

妹の $50 \le x \le 75$ での式は、(50, 0)、(75, 25)を通る直線より、

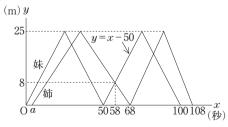
$$y = x - 50 \cdots ii$$

i, iiを連立方程式で解いて、

$$(x, y) = (60, 10)$$

したがって、60(秒後)となる。

2



次の日,姉がプールを泳いで2往復したグラフは、 上図のようになる。

x=58をy=x-50に代入して、y=58-50=8とな

る。よって、姉の平泳ぎの速さは68-58=10秒で 8 m 泳ぐので、 $b=8\div10=0.8$ (m/ 秒) となる。また、姉が平泳ぎで 1 往復するのにかかる時間は、 $50\div0.8=62.5$ (秒) より、姉は、妹がスタートしてから a=68-62.5=5.5 (秒後) にスタートしている。

- (7)①グラフより、1760mを8分で走るので、 $1760 \div 8 = 220 (m/分)$
 - ②直樹さんの式は、(12, 2400)、(27, 4800)を通る ので

$$y = 160x + 480 \cdots i$$

航平さんの式は、(4, 0)、(12, 1760)を通るので、y = 220x - 880… ii

i, iiを連立方程式で解いて,

$$x = \frac{68}{3}(22\frac{2}{3})$$

よって、22分40秒後となる。

- (8)①健太さんが 1 周を走り終えたのは、スタートして 12分後。このとき、航平さんは、 2400-240=2160m地点を走っている。 よって、 $(2160\div240=)9$ 分でたどりつくので、 a=12-9=3
 - ②直樹さんの式は、(12, 2400)、(27, 4800)を通る ので、

$$y = 160x + 480 \cdots i$$

航平さんの式は、(3, 0)、(12, 2160)を通るので、 $y = 240x - 720\cdots$ ii

i, ii を連立方程式で解いて, x=15

よって、15分後となる。

③航平さんが直樹さんに並んでから 2 分後の x=17 を ii に代入すると、y=3360

y=3360をiの式に代入すると、x=18このときに、航平さんが立ち止まるとすると、

b = 18 - 17 = 1

航平さんが、そのまま 2 週目を走り終えるとすると、ii の式に、y=4800を代入して、x=23分後。このとき、直樹さんを27-23=4分待つことになる。

よって、1≦*b*<4

- (9)①グラフを y 軸の正の方向に平行移動するためには、切片を大きくするとよい。よって、ウとなる。
 - ② y = 3x + 1と y = -x + 3を連立方程式で解いて、

$$(x, y) = (\frac{1}{2}, \frac{5}{2})$$

これを y=x+b に代入して,

$$\frac{5}{2} = \frac{1}{2} + b$$

$$b = 2$$

(10)①二元一次方程式 ax+by+c=0を、y を x を使った式で表すと、 $y=-\frac{a}{b}x-\frac{c}{b}$ となる。グラフを y 軸の正の方向に平行移動するには、切片を大きくするとよい。このとき、切片 $-\frac{c}{b}$ の符号が負であ

ることに注意する。また、bの値を小さくしても 切片は大きくなるが、その場合、傾きも変わって しまうため、平行移動にならない。よって、カと なる。

②2x-y-1=0とx+y-3=0を連立方程式で解い

$$(x, y) = (\frac{4}{3}, \frac{5}{3})$$

これを ax + 2y - 2 = 0に代入して.

$$\frac{4}{3}a + \frac{10}{3} - 2 = 0$$

$$a = -1$$

③それぞれの式をyをxを使った式で表すと、

$$y = 2x - 1 \cdots 1$$

$$y = -x + 3 \cdots 2$$

$$y = -\frac{a}{2}x + 1\cdots 3$$

2 つの直線が平行となるとき、傾きが等しいの

(i)①と③の傾きが等しいとき,

$$-\frac{a}{2}=2$$

$$a = -4$$

(ii)②と③の傾きが等しいとき.

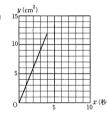
$$-\frac{a}{2} = -1$$

(i), (ii) \$\mathcal{L}\$ 0, a = -4, 2

P. 46

3 <解答例>

- (1) 6秒後 (2) x=2, 5
- (2) (1)



<考え方・解き方>

(1) t 秒後に出会うとすると,

$$(A \sim B \sim P) + (D \sim C \sim Q)$$

= 18 \mathcal{C} δ δ \circ

ここで.

$$(A \sim B \sim P) = t$$

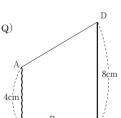
$$(D \sim C \sim Q) = 2t$$

となるから.

$$t + 2t = 18$$

$$t = 6$$

よって、6秒後に出会う。



`-- 6cm

(2)①右図のように、点 P が AB 上にあるとき、

$$\triangle$$
APQ の底辺 AP= x (cm),
高さ QH= 6 (cm)だから,
 \triangle APQ= $\frac{1}{2}$ ×AP×QH
 $y=\frac{1}{2}$ × x ×6 A
 $y=3x$ x cm
となるので、 $0 \le x \le P$
4の変域で、この式の
グラフをかく。

②右図のように、点 P, Qが辺 BC 上にあるとき, △APQ は底辺が PQ. 高さが辺 AB である。ここで、

となる。よって.

点 P. Q が辺 BC 上にあるときのx, y の関係式 は次のようになる。

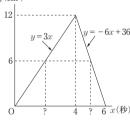
$$\triangle APQ = \frac{1}{2} \times PQ \times AB$$

$$y = \frac{1}{2} \times (-3x + 18) \times 4$$

y = -6x + 36

①, ②より, x, y y y(cm²)

の関係をグラフに 表すと、右図のよ うになるので、y $=6 \pm y = 3x + y$ =-6x+361 = れぞれ代入して. x の値を求めれば よい。



y=3x に代入して、

$$6=3x$$

 $x=2$
 $y=-6x+36$ に代入して、
 $6=-6x+36$
 $x=5$

P. 46

4 <解答例>

- (2) $a = \frac{1}{4}$ (3) $y = \frac{16}{3}$
- (4) $0 \le y \le 12$ (5) $a = \frac{4}{5}$

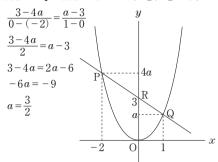
<考え方・解き方>

(1)直線 PQ と y 軸の交点を R とする。 P(-2, 4a). R (0, 3), Q(1, a) であるから、

PR の傾き =
$$\frac{3-4a}{0-(-2)}$$
…①

RQ の傾き =
$$\frac{a-3}{1-0}$$
…②

PRの傾き = RQの傾きであるから、①、②より、



(2) $y = ax^2$ で、x が -1 から 3 まで増加するときの変化 の割合は、 $y = \frac{1}{2}x + b$ の傾きと等しくなるので、

$$\frac{9a-a}{3-(-1)} = \frac{1}{2}$$
$$\frac{8a}{4} = \frac{1}{2}$$
$$a = \frac{1}{4}$$

 $(3) y = ax^2$ に x = -3, y = 12を代入して,

$$12 = 9a$$
$$a = \frac{4}{3}$$

$$y = \frac{4}{3}x^2$$
に $x = 2$ を代入して,

$$y = \frac{4}{3} \times 4$$
$$y = \frac{16}{3}$$

 $(4)\frac{1}{3} > 0$ だから上に開くグラフなので、

$$x=0$$
のとき、 y の最小値=0 $x=6$ のとき、 y の最大値= $\frac{1}{3} \times 6^2 = 12$

よって、yの変域は $0 \le y \le 12$

(5) $y = ax^2$ でx がm からn まで増加するときの変化の割合はa(m+n)で表されるので、

$$a(1+4) = 4$$
$$a = \frac{4}{5}$$

P. 47

5 <解答例>

(2) $-\frac{2}{3}$ (3) $y = -\frac{2}{3}x + 4$

(4) 7個

<考え方・解き方>

$$(1) y = \frac{2}{9} x^2$$
に $x = -6$ を代入して,

$$y = \frac{2}{9} \times (-6)^2$$

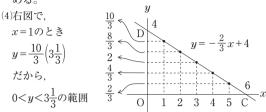
= 8

(2)A(-6, 8), B(3, 2)だから,

変化の割合 =
$$\frac{2-8}{3-(-6)}$$

= $-\frac{2}{3}$

(3)(2)より、A(-6, 8)、B(3, 2)を通る直線の式を求める。



に、整数は3個ある。

同様に、x=2のとき $y=\frac{8}{3}\left(2\frac{2}{3}\right)$ だから 2 個。 x=3のとき y=2だから 1 個。 (2 は含まない) x=4のとき $y=\frac{4}{3}\left(1\frac{1}{3}\right)$ だから 1 個。 x=5のとき $y=\frac{2}{3}$ だから $y=\frac{2}{3}$ でから $y=\frac{2}{3}$ でから

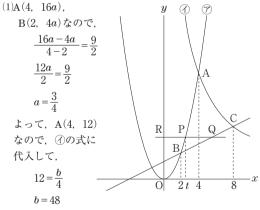
P. 47

6 <解答例>

(1)
$$a = \frac{3}{4}$$
, $b = 48$ (2) $y = \frac{1}{2}x + 2$

(3)
$$(1) \frac{3}{2}t^2 - 4 - t (2) (\frac{8}{3}, \frac{16}{3})$$

<考え方・解き方>



(2)B(2, 3), C(8, 6)を通る直線の式を求める。

(3)① $\mathbf{P}(t, \ \frac{3}{4}t^2)$ とおけるので、点 \mathbf{Q} の y 座標は $\frac{3}{4}t^2$ と

なる。
$$y=\frac{3}{4}t^2$$
を (2) の式 $y=\frac{1}{2}x+2$ に代入して、
$$\frac{3}{4}t^2=\frac{1}{2}x+2$$

$$\frac{1}{2}x = \frac{3}{4}t^2 - 2$$

$$x = \frac{3}{2}t^2 - 4$$

よって、点 Q の x 座標は $\frac{3}{2}t^2-4$ である。

よって.

$$PQ = (\frac{3}{2}t^2 - 4) - t$$
$$= \frac{3}{2}t^2 - t - 4$$

② PR = t なので PQ: PR = 3:2より,

$$(\frac{3}{2}t^2 - t - 4) : t = 3 : 2$$

$$3t^2 - 2t - 8 = 3t$$

$$3t^2 - 5t - 8 = 0$$

$$t = \frac{5 \pm \sqrt{25 + 96}}{6}$$

$$=\frac{5\pm 11}{6}$$

$$t = -1, \frac{8}{3}$$

 $2 < t < 4 \, \text{L} \, \text{h}, \ t = \frac{8}{3}$

P. 48

7 <解答例>

- (1) $a = \frac{3}{4}$
- (2) y = 2x + 4
- (3) -2
- (4) (2, 3)

<考え方・解き方>

- $(1)y = ax^2$ に (4, 12) を代入して、 $a = \frac{3}{4}$
- (2)切片が4なので、求める式をy=mx+4とおき、これに(4, 12)を代入して、

12 = 4m + 4

m = 2

よって、y=2x+4

- (3)(2)より、y=2x+4にy=0を代入して、0=2x+4
 - x = -2

(4) 点 P の y 座標を h とおく。

P. 48

8 <解答例>

- (1) $a = \frac{1}{3}$ (2) $y = -\frac{1}{3}x + 2$
- (3) ① 14 ② 5 倍

<考え方・解き方>

(1) y = x + 6に x = -3を代入して, y = -3 + 6

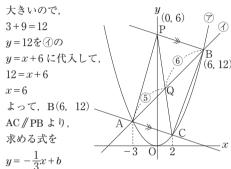
=3 よって、A(-3、3)。これを $y=ax^2$ に代入して、 $a=\frac{1}{\pi}$

(2)(1)より, $y = \frac{1}{3}x^2$ にx = 2を代入して,

$$y = \frac{4}{3}$$

よって、 $C(2, \frac{4}{3})$ 。よって、A(-3, 3)、 $C(2, \frac{4}{3})$ を通る直線の式を求めるとよい。

(3)① \triangle ACP= \triangle ACBになるには、AC $/\!\!/$ PBであればよい。点Bのy座標は、Aのy座標より9だけ



とおき.

B(6, 12)を代入して,

$$12 = -\frac{1}{3} \times 6 + b$$

b = 14

点 P は直線 PB の切片なので点 P の y 座標は14 である。

(3)②線分 AB と線分 PC の交点を Q とする。AC ∥PB より、△AQC∽△BQP となる。

ここで、相似比 AC: BP は、 $A \ge C$ 、 $P \ge B$ の x 座標の差として考えるので、

AC: BP = $\{2 - (-3)\}$: (6-0) = 5: 6 $\exists h \downarrow h$.

AB : AQ = (5+6) : 5 = 11 : 5

左図より、 \triangle ACB と \triangle ACP の重なっている部分は \triangle AQC だとわかる。 \triangle ACB と \triangle AQC の底辺をそれぞれ、AB、AQ とすると高さは等しいので、

 \triangle ACB : \triangle AQC = AB : AQ = 11 : 5

よって、 $\triangle AQC$ は $\triangle ACB$ の $\frac{5}{11}$ 倍である。

P. 49

9 <解答例>

- (1) 9 (2) $y = \frac{1}{2}x + 6$
- (3) (1) 6 (2) $3\sqrt{5}$

<考え方・解き方>

 $(1) y = \frac{1}{4} x^2$ に x = 6 を代入して、

$$y = \frac{1}{4} \times 6^2$$
$$= 9$$

$$(2)$$
 $y = \frac{1}{4}x^2$ に $x = -4$ を代入して、
$$y = \frac{1}{4} \times (-4)^2$$

よって、直線 AB は(-4, 4)、(6, 9)を通ることが わかる。

(3)(1)(2)より、 $y = \frac{1}{2}x + 6$ に x = 2 を代入して、

$$y = \frac{1}{2} \times 2 + 6$$

= 7
よって、P(2, 7)
 $y = \frac{1}{4}x^2$ に $x = 2$ を代入して、
 $y = \frac{1}{4} \times 2^2$

よって、Q(2, 1)

したがって 2 点 P, Q の距離は,

$$7 - 1 = 6$$

②∠ARQ=90°と なるように,

△ARQ をつくる。

ARの長さは、

2-(-4)=6RQの長さは

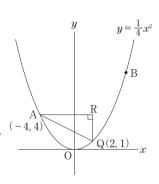
RQ の長さり 4-1=3

三平方の定理より, (-4,4)

$$AQ^2 = 6^2 + 3^2$$

$$AQ^2=45$$

$$AQ = 3\sqrt{5}$$



P. 49

10 <解答例>

(1)
$$a = \frac{1}{4}$$
 (2) $y = \frac{1}{2}x + 2$

(3)
$$(1)\left(\frac{3}{2}, \frac{11}{4}\right)$$
 $(2)\frac{21}{4}$

<考え方・解き方>

 $(1) y = -\frac{1}{3}x^2$ に y = -3を代入して,

$$-3 = -\frac{1}{3}x^2$$

$$x^2 = \pm 3$$

点Aはx<0なので、x=-3

直線 AB は原点と A(-3, -3) を通るので、

その式はy=xだとわかる。

y=x に x=4を代入して,

y = 2

つまり B の座標は(4, 4)である。これを $y=ax^2$ に代入して、

4 = 16a

$$a = \frac{1}{4}$$

(2)(1)より、 $y = \frac{1}{4}x^2$ にx = -2を代入して、

$$y = \frac{1}{4} \times (-2)^2$$
$$= 1$$

よって、C(-2, 1)

したがって、直線 BC は B(4, 4), C(-2, 1) を通る直線だとわかる。

(3)①点 P の x 座標を t とおく。

 \triangle OPC の底辺を直線 BC の切片, 高さを点 P, 点 C の x 座標の差と考えて.

$$\triangle OPC = 2 \times \{t - (-2)\} \times \frac{1}{2} = t + 2$$

次に、直線 AB の式 y=x に x=-2 を代入して、y=-2。点 C の y 座標が 1 より、

 \triangle ABC の底辺をそのy座標の差,高さを点 A, 点 B のx座標の差と考えて.

$$\triangle ABC = \{1 - (-2)\} \times \{4 - (-3)\} \times \frac{1}{2} = \frac{21}{2}$$

よって、 $\triangle OPC$ は $\triangle ABC$ の $\frac{1}{3}$ なので、

$$t+2=\frac{21}{2}\times\frac{1}{3}$$

$$t = \frac{3}{2}$$

点 P の y 座標は $y = \frac{1}{2}x + 2$ に $x = \frac{3}{2}$ を代入して,

$$\frac{1}{2} \times \frac{3}{2} + 2 = \frac{11}{4}$$

したがって、 $P\left(\frac{3}{2}, \frac{11}{4}\right)$ である。

②点 Q の y 座標は $y = -\frac{1}{3}x^2$ に $x = \frac{3}{2}$ を代入して,

$$y = -\frac{1}{3} \times \left(\frac{3}{2}\right)^2 = -\frac{3}{4}$$

よって、
$$Q\left(\frac{3}{2}, -\frac{3}{4}\right)$$

また、直線 AB の式 y=x に $x=\frac{3}{2}$ を代入して、

 $y = \frac{3}{2}$ となる。その座標を R とすると、R $\left(\frac{3}{2}, \frac{3}{2}\right)$ である。

 \triangle ABQ の底辺を RQ,高さを点 A,点 B の x 座標の差と考えて,

$$\triangle ABQ = \left| \frac{3}{2} - \left(-\frac{3}{4} \right) \right| \times \left| 4 - (-3) \right| \times \frac{1}{2} = \frac{63}{8}$$

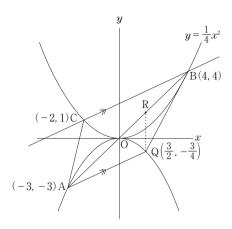
四角形 AQBC = △ABC + △ABQ

$$=\frac{21}{2}+\frac{63}{8}=\frac{147}{8}$$

 \triangle OPC は \triangle ABC $O(\frac{1}{3})$ なので、

$$\triangle OPC = \frac{21}{2} \times \frac{1}{3} = \frac{7}{2}$$

よって、
$$\frac{147}{8} \div \frac{7}{2} = \frac{21}{4}$$
(倍)



11 <解答例>

(1) 12 (2) $a = \frac{1}{2}$

(3)
$$y = -\frac{1}{2}x + 6$$
 (4) $\left(-\frac{4}{3}, \frac{20}{3}\right)$

<考え方・解き方>

(1) y = -x + 12に y = 0 を代入して、x = 12

(2)y = -x + 12に x = 4を代入して、y = 8よって、A(4, 8)。これを $y = ax^2$ に代入して、8 = 16a

$$a = \frac{1}{2}$$

(3)点 B は点 A と y 軸について対称な点なので、 B(-4, 8)

B(-4, 8), C(12, 0)より, 傾きは,

$$\frac{0-8}{12-(-4)} = -\frac{1}{2}$$

求める式を $y = -\frac{1}{2}x + b$ とおき, (12, 0) を代入して,

b = 6

したがって、
$$y = -\frac{1}{2}x + 6$$

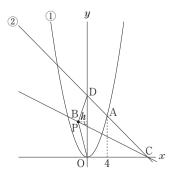
(4)△CDO の面積は.

$$12 \times 12 \times \frac{1}{2} = 72$$

 $\triangle POC + \triangle PCD = 80$ になるときなので、

 $\triangle CDO \negthinspace < (\triangle POC \negthinspace + \triangle PCD)$

つまり、点Pはx<0の範囲になければならないので、下図のようになる。



 \triangle PDO の高さをhとおく。 \triangle PDO の面積をhを使って表すと、

$$12 \times h \times \frac{1}{2} = 6h$$

 \triangle POC + \triangle PCD = \triangle CDO + \triangle PDO = 80 \circ あ れ ば よ いの \circ .

$$72 + 6h = 80$$

これを解いて、 $h=\frac{4}{3}$

よって、点 P の x 座標は $-\frac{4}{3}$, これを $y = -\frac{1}{2}x + 6$

に代入して、
$$y=\frac{20}{3}$$

したがって、 $P(-\frac{4}{3}, \frac{20}{3})$

P. 50

12 <解答例>

(1) $y = \frac{1}{4}x + 3$ (2) $\mathcal{T}(8, 8)$ $\mathcal{A}(4, 4)$

(3)
$$\left(\frac{28}{5}, \frac{22}{5}\right)$$

<考え方・解き方>

 $(1)y = \frac{1}{8}x^2$ に x = -4を代入して、A(-4, 2)

$$y = \frac{1}{8}x^2$$
に $x = 6$ を代入して、B $\left(6, \frac{9}{2}\right)$

A(-4, 2), $B(6, \frac{9}{2})$ を通る直線なので、

$$y = \frac{1}{4}x + 3$$

(2)点 C の x 座標を m とする。これを $y = \frac{1}{8}x^2$ に代入

$$\mathsf{L}\mathsf{T},\ \mathsf{C}\!\left(m,\ \frac{1}{8}m^2\right)$$

四角形 ODCE は正方形なので、OD=OE より、

$$m = \frac{1}{8}m^2$$

これを解いて.

$$m = 0.8$$

 $m > 0 \downarrow b$, $m = 8 \circ \downarrow 5$, $C(8, 8) \cdots$

正方形の面積を二等分するには、二等分線が対角線 の交点(中点)を通ればよい。

対角線の交点(中点)を M とする。

C(8, 8), O(0, 0)より, Mの座標は,

$$\left(\frac{8+0}{2}, \frac{8+0}{2}\right) = (4, 4) \cdots \checkmark$$

ここで、 $y = \frac{1}{4}x + 3k(4, 4)$ を代入すると、

4 = 4

等式が成り立つので、 $y = \frac{1}{4}x + 3$ は $\mathbf{M}(4, 4)$ を通ることがわかる。

(3)点 P の x 座標を t とおく。 これを $y = \frac{1}{4}x + 3$ に代入

 $\triangle PCE = 8 \times \left\{ 8 - \left(\frac{1}{4} t + 3 \right) \right\} \times \frac{1}{2} = 20 - t \cdots \text{ }$

直線 AB と y 軸との交点を F とおくと、

$$\triangle OPA = \triangle OFA + \triangle OFP$$
$$= 3 \times 4 \times \frac{1}{2} + 3 \times t \times \frac{1}{2}$$

$$=6+\frac{3}{2}t\cdots$$
②

①、②より、

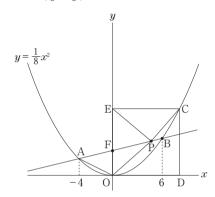
$$20 - t = 6 + \frac{3}{2}t$$

これを解いて.

$$t = \frac{28}{5}$$

点 P の y 座標は、 $\frac{1}{4} \times \frac{28}{5} + 3 = \frac{22}{5}$

よって、
$$\left(\frac{28}{5}, \frac{22}{5}\right)$$



P. 51

13 <解答例>

- (1) 1 (2) (4, 4) (3) $y = \frac{1}{2}x + 2$
- $(4) \quad \left(\frac{4}{3}, \frac{8}{3}\right)$

<考え方・解き方>

- (1) $y = \frac{1}{4}x^2$ に x = -2を代入。 $y = \frac{1}{4} \times (-2)^2 = 1$ 。 よって、点 A の y 座標は 1 となる。
- (2)点Bのy座標は、点Aのy座標より、3だけ大きいので4となる。

よって、
$$y = \frac{1}{4}x^2$$
に $y = 4$ を代入して、

$$4 = \frac{1}{4}x^2$$

 $x^2 = 16$

 $x = \pm 4$

x>0 $\downarrow b$.

x = 4

したがって,点Bの座標は,(4,4)となる。

(3)A(-2, 1), B(4, 4)を通る直線の式を求める。

(4) 点 P の x 座標を t とすると,

$$P(t, \frac{1}{2}t+2)$$
, $Q(t, \frac{1}{4}t^2)$, $R(t, 0)$ となる。

$$\mbox{\sharp} \mbox{\supset} \mbox{\nwarrow}, \ \ \mbox{PQ} = (\frac{1}{2}t + 2) - (\frac{1}{4}t^2) = \frac{1}{2}t + 2 - \frac{1}{4}t^2$$

$$QR = (\frac{1}{4}t^2) - (0) = \frac{1}{4}t^2$$

ここで、PQ:QR=5:1より、

$$\frac{1}{2}t + 2 - \frac{1}{4}t^2$$
: $\frac{1}{4}t^2 = 5$: 1

 $3t^2 - t - 4 = 0$

$$t = -1, \frac{4}{3}$$

t>0なので、

$$t = \frac{4}{3}$$

したがって、点 P の座標は $(\frac{4}{3}, \frac{8}{3})$ となる。

P. 51

14 <解答例>

- (1) $a = \frac{3}{4}$ (2) $y = \frac{3}{2}x + 6$
- (3) ① $\frac{3}{2}$ ② 9倍

<考え方・解き方>

- (1) A の y 座標が 3 より、④ の y = -x + 1に y = 3を代入すると、3 = -x + 1、よって、x = -2。よって、点 A の x 座標は -2となる。x = -2、y = 3を⑦の $y = ax^2$ に代入して、 $3 = a \times (-2)^2$ より、 $a = \frac{3}{4}$ となる。
- (2)A(-2, 3), C(4, 12)を通る直線の式を求める。
- (3)①点 P の x 座標を t とすると、

$$P(t, \frac{3}{4}t^2)$$
, $Q(t, \frac{3}{2}t+6)$, $R(t, -t+1)$ となる。

よって,
$$PQ = (\frac{3}{2}t + 6) - (\frac{3}{4}t^2) = \frac{3}{2}t + 6 - \frac{3}{4}t^2 \cdots (1)$$

$$PR = (\frac{3}{4}t^2) - (-t+1) = \frac{3}{4}t^2 + t - 1 \cdots ②$$

$$\frac{3}{2}t + 6 - \frac{3}{4}t^2$$
: $\frac{3}{4}t^2 + t - 1 = 3$: 1

$$2t^2 + t - 6 = 0$$

$$t = -2, \frac{3}{2}$$

$$\frac{2}{3} < t < 4$$
\$\tau \text{\$\sigma\$},

$$t = \frac{3}{2}$$

したがって、点Pのx座標は $\frac{3}{2}$ となる。

②①より、 $P(\frac{3}{2},\frac{27}{16})$ 、 $Q(\frac{3}{2},\frac{33}{4})$ 、 $R(\frac{3}{2},-\frac{1}{2})$ となる。 条件より、PQ:PR=3:1。

$$\sharp \, t$$
, AB: BR = $\frac{8}{3}$: $\frac{3}{2} - \frac{2}{3} = 16$: 5,

$$AQ:QC = \frac{3}{2} - (-2):4 - \frac{3}{2} = 7:5$$
となる。

ここで、 $\triangle ABP = 16a$ とすると、 $\triangle APR = 21a$ となり、 $\triangle AQR = 84a$ と表せる。さらに、 $\triangle ARC =$

 $84a \times \frac{12}{7} = 144a$ と表せるので、 $144a \div 16a = 9$ (倍) となる。

15 <解答例>

- (1) 8 (2) 4 (3) $y = -\frac{1}{2}x + 4$
- (4) $\left(\frac{8}{3}, -\frac{8}{3}\right)$

<考え方・解き方>

- (1) $y = \frac{1}{8}x^2$ にx = -8を代入して、 $y = \frac{1}{8} \times (-8)^2 = 8$ 。 よって、点 A の y 座標は 8 となる。
- $(2)y = \frac{1}{8}x^2$ に y = 2を代入して,

$$2 = \frac{1}{8} x^2$$

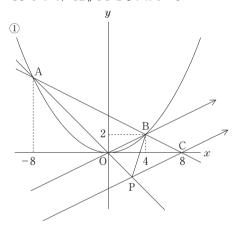
$$x^2 = 16$$

$$x = \pm 4$$

$$x = 4$$

したがって、点Bのx座標は4となる。

- (3)A(-8, 8), B(4, 2)を通る直線の式を求める。
- (4)△PAB=△OAC より、重なっている部分の△OAB をのぞいて、次の図のように△OBP=△OBC とな る。よって、OB // PC となればよい。



直線 OB の式は y = ax に B(4, 2)を代入して,

$$y = \frac{1}{2}x$$

直線 AB の式に C の y=0を代入して,

$$0 = -\frac{1}{2}x + 4$$

x = 8

したがって、C(8, 0)となる。

OB // PC より、直線 PC の式を $y = \frac{1}{2}x + b$ とおき、

C(8, 0)を代入して,

$$0 = \frac{1}{2} \times 8 + b$$

$$b = -4$$

よって,
$$y = \frac{1}{2}x - 4$$

直線 OA の式は y = ax に A(-8, 8)を代入して, y = -x

点Pの座標は、直線PCと直線OAの交点なので、

$$\begin{cases} y = \frac{1}{2}x - 4 \\ \dots & \dots \end{cases}$$

y = -x

これを解くと,

$$x = \frac{8}{3}$$
, $y = -\frac{8}{3}$

したがって、点Pの座標は $\left(\frac{8}{3}, -\frac{8}{3}\right)$ となる。

P. 52

16 <解答例>

- (1) $a = \frac{1}{4}$ (2) y = 4x 12
- (3) 1 + 2 + 2 = 4, 2

<考え方・解き方>

 $(1) y = ax^2$ に A(4, 4) を代入して,

$$4 = a \times 4^2$$

$$a = \frac{1}{4}$$

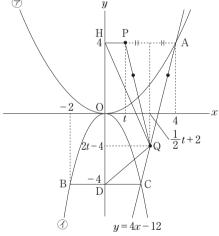
(2)B のx座標が-2より、Cのx座標が2とわかる。

$$④$$
の $y = -x^2$ に $x = 2$ を代入すると,

$$y = -2^2 = -4$$

A(4, 4), C(2, -4)を通る直線の式を求める。

(3)下図参照。



- ① QA=QPより、点Qのx座標は、 点Pと点Aのx座標の中点となる。 P(t, 4)、A(4, 4)より、 点Qのx座標は、 $\frac{t+4}{2} = \frac{1}{2}t+2$ となる。
- ②直線 AC の y = 4x 12に $x = \frac{1}{2}t + 2$ を代入して,

$$y = 4\left(\frac{1}{2}t + 2\right) - 12$$

$$y = 2t - 4$$

よって、
$$Q(\frac{1}{2}t+2, 2t-4)$$
となる。

$$\triangle QHD = \triangle PHQ \times 3 \sharp \emptyset$$

$$\frac{1}{2} \times 8 \times (\frac{1}{2}t + 2) = \frac{1}{2} \times t \times \{4 - (2t - 4)\} \times 3$$

$$3t^2 - 10t + 8 = 0$$

 $t = \frac{4}{3}$, 2となる。

17 <解答例>

- (1) a = 2 (2) 2
- (3) y = 2x + 4 (4) $\left(\frac{3}{4}, \frac{11}{2}\right)$

<考え方・解き方>

- (1) $y = ax^2$ に A(-1, 2)を代入して、 $2 = a \times (-1)^2$ a = 2
- (2)(1)より、①の関数は、 $y=2x^2$ と表すことができる。 y=8を代入して、
 - $8 = 2x^2$
 - $x^2 = 4$
 - $x = \pm 2$
 - x>0 \downarrow \flat ,
 - x=2

したがって,点Bのx座標は2となる。

- (3)A(-1, 2), B(2, 8)を通る直線の式を求める。
- $(4)\triangle OPC = \triangle AOB \times \frac{1}{4} \sharp \emptyset$,

AB:CP=4:1となる。

よって,平行線と線分の比の関係から,

P のx 座標は.

$$x = \{2 - (-1)\} \times \frac{1}{4}$$
$$= 3 \times \frac{1}{4}$$

$$=3\times\frac{3}{4}$$

直線AB の式に $x = \frac{3}{4}$ を代入して,

$$y = 2 \times \frac{3}{4} + 4$$

$$=\frac{11}{2}$$

したがって, 点P の座標は $(\frac{3}{4}, \frac{11}{2})$ となる。

P. 53

18 <解答例>

- (1) $a = \frac{1}{2}$ (2) $y = \frac{6}{5}x + \frac{16}{5}$
- (3) $1\frac{4}{3}$ $2(-\frac{2}{3}, \frac{12}{5})$

<考え方・解き方>

 $(1)y = 2x^2$ に x = 1 を代入して.

 $y = 2 \times 1^2$

y=2

よって, A(1, 2)となる。

直線 OA の式は、y = ax に A(1, 2)を代入して、

y = 2x

直線 OA の式に x = 4 を代入して,

 $y = 2 \times 4$

y = 8

よって、B(4, 8)となる。

 $y = ax^2$ に B(4, 8) を代入して、

 $8 = a \times 4^2$

$$a=\frac{1}{2}$$

 $(2)y = 2x^2$ に x = -1 を代入して、

$$y = 2 \times (-1)^2$$

y = 2

よって、C(-1, 2)となる。

したがって,

B(4, 8), C(-1, 2)を通る直線の式を求める。

(3)① 点 P の x 座標を t とすると.

$$P(t, \frac{1}{2}t^2)$$
, $Q(t, 0)$, $R(t, 2t^2)$ となる。

よって、
$$PR = 2t^2 - \frac{1}{2}t^2 = \frac{3}{2}t^2$$

$$QD = 4 - t$$

ここで、PR=QDより、

$$\frac{3}{2}t^2 = 4 - t$$

$$3t^2 + 2t - 8 = 0$$

$$t = -2, \frac{4}{3}$$

$$t = \frac{4}{3}$$

したがって、点Pのx座標は、 $\frac{4}{3}$ となる。

 \bigcirc \triangle SPR = \triangle SQD $\times \frac{5}{6}$ \updownarrow \emptyset ,

 \triangle SPR: \triangle SQD=5:6

それぞれの三角形の底辺を PR, QD と考えると、

PR = QD より、高さの比が5:6となればよい。 ここで、点S の x 座標を m とすると、

直線 BC の
$$y = \frac{6}{5}x + \frac{16}{5}$$
に $x = m$ を代入して,

$$y = \frac{6}{5}m + \frac{16}{5}$$

よって、 $S(m, \frac{6}{5}m + \frac{16}{5})$ となる。

高さの比が5:6より.

$$(\frac{4}{3}-m)$$
 : $(\frac{6}{5}m+\frac{16}{5})=5$: 6

$$m = -\frac{2}{2}$$

点 S の y 座標は、 $\frac{6}{5}m + \frac{16}{5}$ に、 $m = -\frac{2}{3}$ を代入して、

$$\frac{6}{5}$$
 × $(-\frac{2}{3})$ + $\frac{16}{5}$ = $\frac{12}{5}$

したがって、点Sの座標は、 $(-\frac{2}{3}, \frac{12}{5})$ となる。

P. 54

19 <解答例>

- $(1)\quad 4\qquad (2)\quad -6$
- (3) $y = -\frac{1}{2}x + 6$ (4) $\left(3, \frac{9}{4}\right)$

<考え方・解き方>

 $(1) y = \frac{1}{4} x^2$ に x = 4を代入して,

$$y = \frac{1}{4} \times 4^2 = 4$$

したがって、点Aのy座標は 4 となる。

 $(2)y = \frac{1}{4}x^2$ に y = 9を代入して,

$$9 = \frac{1}{4} \times x^2$$

$$x^2 = 36$$

$$x = -6$$

したがって、点Bのx座標は-6となる。

(3)A(4, 4), B(-6, 9)を通る直線の式を求める。

(4)点 P の x 座標を t とすると.

$${
m P}(t,~{1\over 4}~t^2),~{
m Q}(t,~-{1\over 2}~t+6),~{
m R}(t,~0)$$
となる。よって、

$$QP = -\frac{1}{2}t + 6 - \frac{1}{4}t^2$$

$$PR = \frac{1}{4} t^2$$

$$-\frac{1}{2}t + 6 - \frac{1}{4}t^2 = \frac{1}{4}t^2$$
$$t^2 + t - 12 = 0$$

$$t = -4$$
, 3

したがって、点 P の座標は $(3, \frac{9}{4})$ となる。

P. 54

20 <解答例>

- (1) $a = \frac{1}{4}$ (2) $y = \frac{4}{3}x + \frac{16}{3}$
- (3) ① $-\frac{3}{2}t^2 + 8t + 32$ ② $t=2+2\sqrt{5}$

<考え方・解き方>

 $(1) y = \frac{1}{2} x + 2$ に x = 4を代入して,

$$y = \frac{1}{2} \times 4 + 2$$

よって、A(4, 4)。これを $y = ax^2$ に代入して、

 $4 = a \times 4^2$

$$a = \frac{1}{4}$$

 $(2)y = \frac{1}{4}x^2$ に x = 8を代入して,

$$y = \frac{1}{4} \times 8^2$$

よって、B(8, 16)となる。

また, $y = \frac{1}{2}x + 2k$ y = 0を代入して,

$$0 = \frac{1}{2}x + 2$$

$$x = -4$$

よって、C(-4, 0)。

したがって、B(8, 16)、C(-4, 0)を通る直線の式 を求めるとよい。

(3)① $y = \frac{1}{4}x^2$ に x = t を代入して、 $y = \frac{1}{4}t^2$ より、

$$P(t, \frac{1}{4}t^2)$$
となる。

ここで、直線 BC 上に点 P と同じx 座標をもつ点 Qをとる。 $y=\frac{4}{3}x+\frac{16}{3}$ にx=tを代入して、

$$y = \frac{4}{3}t + \frac{16}{3}$$
より、 $Q(t, \frac{4}{3}t + \frac{16}{3})$ となる。

よって、
$$\triangle BCP = \triangle BPQ + \triangle CPQ$$
 より、

$$\triangle \text{BCP} = \frac{1}{2} \times (\frac{4}{3} t + \frac{16}{3} - \frac{1}{4} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (\frac{4}{3} t + \frac{1}{3} t^2) \times (8 - t) + \frac{1}{2} \times (8 - t) + \frac{$$

$$+\frac{16}{3} - \frac{1}{4}t^2) \times \{t - (-4)\}$$

$$\begin{split} \textcircled{2} \triangle \text{PCD} = & \frac{1}{2} \times |8 - (-4)| \times \frac{1}{4} t^2 \\ = & \frac{3}{2} t^2 \end{split}$$

$$\triangle BCP = \frac{1}{3} \times \triangle PCD \downarrow \emptyset$$
,

$$-\frac{3}{2}t^2 + 8t + 32 = \frac{1}{3} \times \frac{3}{2}t^2$$

$$4 \le t \le 8 \sharp \mathfrak{h}$$
 ,

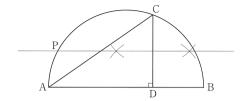
$$t=2+2\sqrt{5}$$
となる。

第5講座 平面図形

P 55

1

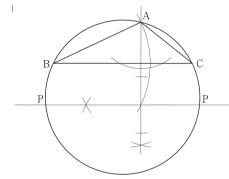
(1)<解答例>



<考え方・解き方>

 \triangle ADC の面積を半分にするには、高さを半分にすればよいので、線分 CD の垂直二等分線と \widehat{AC} との交点が点 Pである。

(2) <解答例>



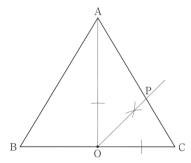
<考え方・解き方>

作図の手順は以下の通り。

- ①点 A を通る BC の垂線を作図し、BC との交点を O とする。
- ②中心を O, 半径を OA とする円弧をかき, BC の垂線との交点を Q とする。
- ③点Qを通る半直線OAの垂線をかく。

半直線 OA の垂線と円との交点が点 Pである。

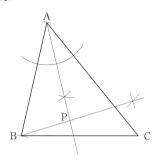
(3)<解答例>



<考え方・解き方>

AB=AC の二等辺三角形 ABC で辺 BC の中点 O と A を結ぶと \angle AOC= 90° となるので、 \angle AOC の二等分線と辺 AC の交点が点 P である。

(4) <解答例>

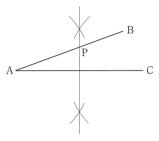


<考え方・解き方>

作図の手順は以下の通り。

- ①∠BAP=∠CAP なので、点 P は∠BAC の二等分線 上にある。よって、∠BAC の二等分線を作図する。
- ②∠PBA = 60° なので、線分 AB を 1 辺とする正三角 形を作図する。
- ③①と②の交点が点 P となる。

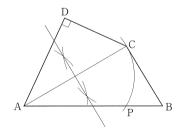
(5)<解答例>



<考え方・解き方>

∠PAC = ∠PCA より、二等辺三角形 PAC を作図する。 二等辺三角形の頂角の二等分線は、底辺を垂直に 2 等 分するので、線分 AC の垂直二等分線と線分 AB の交 点が点 P である。

(6) <解答例>

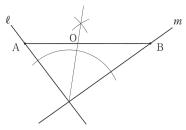


<考え方・解き方>

 \widehat{AD} の円周角より、 $\angle APD = \angle ACD$ となればよい。よって、 点 P は 3 点 A、C、D を通る円と辺 AB の交点となる。したがって、作図の手順は以下の通り。

- ①線分 AC の垂直二等分線を作図し、3点 A, C, D を通る円の中心を求める。
- ②①で求めた円の中心から点 C までの長さを半径とする, C を通る円弧を作図する。
- ③②と辺 AB の交点が点 P となる。

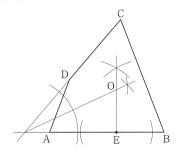
(7) <解答例>



<考え方・解き方>

直線 ℓ , m に接するので、2つの直線がつくる角の二等分線を作図し、線分 AB との交点が中心 O である。

(8) < 解答例 >

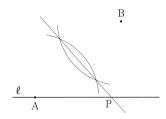


<考え方・解き方>

作図の手順は以下の通り。

- ①点 E で辺 AB に接するので、点 E を通る辺 AB への 垂線を作図する。
- ②辺 AB と辺 CD に接するので、この 2 辺を延長してできた角の二等分線を作図する。
- ③①と②の交点が中心 O である。

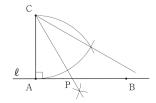
(9) < 解答例 >



<考え方・解き方>

点 P は、 2 点 A、 B から等しい距離にあるので、線分 AB の垂直二等分線を作図する。よって、線分 AB の垂直二等分線と直線 ℓ の交点が点 P となる。

(10) <解答例>



<考え方・解き方>

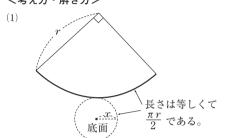
 \angle ACP=30°の直角三角形 ACP を作図すれば、 \angle APC=60°となるので、 \angle CPB=120°となる。よって、作図の手順は以下の通り。

- ①線分 AC を 1 辺とする正三角形を作図する。
- ②頂点Cの角の二等分線を作図する。
- ③②と直線ℓの交点が点Pである。

P. 58

2 <解答例>

(1) $\frac{\pi r^2}{16}$ (2) 144° (3) 3π cm (4) $y = \frac{720}{x}$ <考え方・解き方>



おうぎ形の弧の長さは半径がr, 中心角が 90° だから, $2\pi r \times \frac{90^\circ}{360^\circ} = \frac{\pi r}{2}$ である。ここで,おうぎ形の弧の長さと,底面の円の円周とは等しいから,底面の円周は $\frac{\pi r}{2}$ である。この円の半径をxとすると,円周の長さの関係より.

$$2\pi x = \frac{\pi r}{2}$$

よって、円の面積は $\frac{r}{4} \times \frac{r}{4} \times \pi = \frac{\pi r^2}{16}$ である。

(2)円 O の円周は 10π 、 \widehat{AB} の長さは円 O′の円周と等しいので 4π である。よって、 \widehat{AB} の長さは全体の円周の $\frac{4\pi}{10\pi} = \frac{2}{5}$ である。よって、おうぎ形の面積は全体の円 O の面積の $\frac{2}{5}$ 、中心角は全体の 360° の $\frac{2}{5}$ である。よって、

中心角 =
$$360 \times \frac{2}{5}$$

= 144°
 $5cm$ 中心角が全体の $\frac{2}{5}$
面積が全体の $\frac{2}{5}$
弧が全体の $\frac{2}{5}$

(3)弧の長さ=円周× $\frac{108^{\circ}}{360^{\circ}}$ より、

$$(2 \times 5 \times \pi) \times \frac{108^{\circ}}{360^{\circ}} = 10 \pi \times \frac{3}{10}$$

= 3π (cm)

(4) \widehat{AB} の長さは円 P の周と等しいから.

$$\widehat{AB} = 2 \times 2 \times \pi$$

$$=4\pi\cdots$$
①

ここで、おうぎ形の弧の長さを求める公式を利用し

 $\widehat{AB} = 2 \times x \times \pi \times \frac{y}{360} \cdots (2)$ ①. ②より. $2\pi x \times \frac{y}{360} = 4\pi$ xy = 720-2cm ₽

P. 58

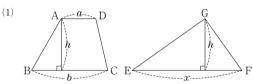
3 <解答例>

- (1) a + b
- (2) $\frac{3}{2}$ 倍

- (4) 1, \pm (5) $\frac{360^{\circ}}{n}$
- (6) 41°

- (7) n = 18
- (8) (1) × (2) (3) ×
- (10) $a = 8 \frac{4}{2}b$

<考え方・解き方>

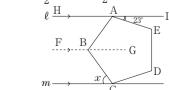


2つの多角形の高さをともにh, EF = x とすると, 台形 ABCD = △GEF より.

$$(a+b) \times h \times \frac{1}{2} = \frac{1}{2} \times x \times h$$
$$(a+b) \times h = x \times h$$

a+b=x

よって、 \triangle GEFの底辺EFの長さはa+bで表される。 (2)もとの台形の上底の長さを2a, 下底の長さを4a, 高さをhとおくと、面積は $(2a+4a) \times h \times \frac{1}{2} = 3ah$ となる。また、上底の長さを半分に、下底の長さを 2 倍にしてできる台形の面積は $(a+8a) \times h \times \frac{1}{2} = \frac{9}{2}$ ah なので $\frac{9}{2}ah \div 3ah = \frac{3}{2}$ (倍)になっている。



上図のように点Bを通り、直線 ℓ 、m に平行な直 線 FG を引くと、

 $\angle BAE = 108^{\circ}$

 $\angle BAI = 108 + 23 = 131^{\circ}$

 $\angle ABF = \angle BAI = 131^{\circ}$

よって、∠ABG = 180 - 131 = 49°となる。よって、

 $\angle GBC = 108 - 49 = 59^{\circ} となり.$

 $/x = /GBC = 59^{\circ} \text{ cos } \delta_{\circ}$

(4)ア~オのそれぞれの逆は次のようになる。

 $r \times x > 6$ x = 7 r = 7

イ自然数 n が 2 でも 3 でもわりきれるならば n は 6の倍数である。

ウ \triangle ABC において、 \angle B=60°ならば、AB=BC= CAである。

工四角形が平行四辺形ならば、対角線がそれぞれの 中点で交わる。

オ△ABC と△DEF において、△ABC=△DEF なら i, $\triangle ABC ≡ \triangle DEF \ cap \delta$.

(5)正多角形の外角の和は常に360°であるから、正 n 角形の1つの外角の大きさは,

$$360 \div n = \frac{360}{n}$$

(6)△BDE は、頂角 DBE が38°の二等辺三角形だから、

$$\angle BDE = (180 - 38) \div 2 = 71^{\circ} \cdots \textcircled{1}$$

 $\triangle BCD \ \mathcal{C}$, $\angle BCD = \angle BAD = 112^{\circ}$, $\angle DBC$ $=38^{\circ} \ \text{$\sharp$} \ \text{$\flat$}$.

$$\angle BDC = 180 - (38 + 112) = 30^{\circ} \cdots (2)$$

①. ②より.

$$\angle$$
 EDC = \angle BDE - \angle BDC
= $71 - 30$
= 41°

(7)1つの外角は、

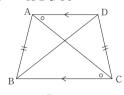
 $180 - 160 = 20^{\circ} \, \text{C}.$

外角の和は360°だから.

 $360 \div 20 = 18^{\circ}$

よって、正18角形なので、n=18となる。

AD ∥BC となるが、 AB=DC の条件では 右図のような等脚台 形も考えられる。



②条件の式は,「対角線 が. それぞれの中点で 交わる。」という平行 四辺形の成立条件に おきかえられる。

 $\textcircled{3}\triangle BAC ≡ \triangle DAC \ \texttt{C}\ \texttt{D}$ れば、右図のような線 対称な図形も考えられる。

(9)折り返しの図なので.

 $\angle DAE = \angle DFE = 72^{\circ}$ DE // BC より、 $\angle AED = \angle ECF = 67^{\circ}$

 \triangle ADE \circ .

 $\angle ADE = 180 - (72 + 67)$

=41°

よって、∠FDE も41°なので、

$$\angle BDF = 180 - 41 \times 2$$

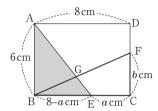
= 98°

(10)△ABE = △ABG + △BEG, △BCF = 四角形 ECFG + △BEG より, △ABE と△BCF の面積が等しい。 よって.

$$\triangle ABE = \triangle BCF$$

$$\frac{1}{2} \times 6 \times (8-a) = \frac{1}{2} \times 8 \times b$$

これをaについて解くと、 $a=8-\frac{4}{3}b$



P. 60

4 <解答例>

(1) 6 cm

(2) ①ウ ②イ

<考え方・解き方>

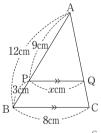
(1)右図のような三角形において, PQ//BCより,

$$AP : AB = PQ : BC$$

9: 12 = x : 8

$$x = 6$$

よって、
$$PQ=6(cm)$$



(2)①四角形 GHPF, FJBP D はともに平行四辺形 だから.

$$GF = HP$$

 $FJ = PB$

また.

∠GFI = ∠IPB = 90 よって、△GFJ ≡ △HPB なので、

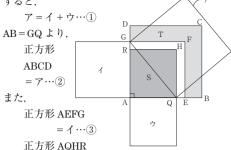
> 台形 GHIF = △GFJ - △HIJ…② 台形 LJBP = △HPB - △HIJ…③

①. ②. ③より.

台形 GHIF=台形 IJBP

台形 GHIF=T, 台形 LJBP>S だから, S は T より小さい。

②直角三角形 GAQ で、三平方の定理の原理を利用すると。



= ウ…④

ここで、②、③、④より、

T=正方形 ABCD – 正方形 AEFG = ア – イ S = 正方形 AQHR = ウ

よって.

$$T-S=(\mathcal{T}-\mathcal{A})-$$
ウ…⑤

①、⑤より、

$$T-S = \overrightarrow{7} - \overrightarrow{1} - \overrightarrow{p}$$
$$= (\cancel{1} + \cancel{p}) - \cancel{1} - \cancel{p}$$
$$= 0$$

よって、T=Sである。

P.61

5 <解答例>

- (1) 38° (2) 58° (3) 117° (4) 115° (5) 29°
- (6) 41° (7) 55° (8) 17° (9) 80° (10) 27 **考え方・解き方>**

(1)円の半径 OE が、弦 AC を二等分しているので、 OE と AC は垂直に立わっている。 トゥア / ADO

OE と AC は垂直に交わっている。よって、 \angle ADO = 90° である。条件より、 \angle OAD = 14° であるから、

$$\angle AOD = 180 - 90 - 14$$

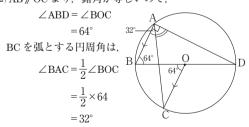
= 76°

ここで、円周角の定理より、

$$\angle ABE = \frac{1}{2} \angle AOD$$

= $\frac{1}{2} \times 76$
= 38°

(2) AB // OC より、錯角が等しいので、



線分BD が直径なので、∠BAD=90°だから、

$$\angle DAC = \angle BAD - \angle BAC$$

= $90 - 32$
= 58°

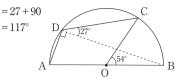
(3)点 B, D を結ぶと, 円周角の定理より,

$$\angle BDC = \frac{1}{2} \angle BOC$$

$$= \frac{1}{2} \times 54$$
$$= 27^{\circ}$$

また、 $\angle ADB = 90^{\circ}$ だから、

$$\angle CDA = \angle BDC + \angle ADB$$



$$(4) \angle BOC = 180 - \angle COD \ \ \ \ \ \ \ \)$$

$$\angle BOC = 180 - 36$$

= 144°

円周角の定理より.

$$\angle BAC = \frac{1}{2} \angle BOC$$

$$= \frac{1}{2} \times 144$$

$$= 72^{\circ}$$

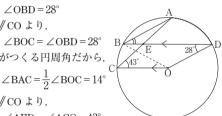
△ABE の外角だから、

$$\angle AED = \angle ABE + \angle BAE$$

= $43 + 72$
= 115°

(5)△OBD は二等辺三角形なので、

 \angle OBD = 28°



BD/COより.

BC がつくる円周角だから、

BD // CO より.

 $\angle AED = \angle ACO = 43^{\circ}$

△ABE で外角の性質より、∠ABD = 43 - 14 = 29° (6)△OCD は OD = OC の二等辺三角形であるが、条件 より、OC=CDでもあるので、正三角形である。

 $\angle ODC = 60^{\circ}$

円周角の定理より,

$$\angle BDC = \frac{1}{2} \angle BOC = 19^{\circ}$$

よって.

よって.

 $\angle BDO = 60 - 19 = 41^{\circ}$ (7)∠AEB= 90° だから. $\angle BED = 108 - 90$ $=18^{\circ}$

BDの円周角だから.

$$\angle BCD = \angle BED = 18^{\circ}$$
 ①

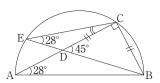
CG // ABより、錯角は等しいので、

$$\angle CGF = \angle BAF = 37^{\circ} - (2)$$

∠BFE は△CFG の外角だから、①、②より、

$$\angle$$
BFE = $18 + 37$
= 55°

 $(8) \angle ACB = 90^{\circ} \text{ C}.$ DC=BCだから、 △CDB は直角二 等辺三角形 よって.



 $\angle CDB = 45^{\circ}$

BC に対する円周角だから、

$$\angle CEB = \angle CAB$$

= 28°

△CED の外角だから。

$$\angle$$
 DCE + 28 = 45

$$\angle DCE = 17^{\circ}$$

(9) 点 O と 2 点 C. D を結ぶと、OA = OC より、△OAC は二等辺三角形となるので、∠OAC=∠OCA=70° よって、∠OCE=110°、∠AOC=40°となる。 $\mathbb{C}\mathbb{C}$. $\widehat{AC}:\widehat{CD}=1:2\$ \$\\ \begin{aligned} \lambda \text{AOC}:\(\angle \text{COD}=1: \\ \end{aligned}\$\] 2となる。

したがって、 $\angle COD = \angle AOC \times 2 = 40 \times 2 = 80^{\circ}$ また、接線 DE と円の半径 OD は垂直に交わるので、 $\angle ODE = 90^{\circ}$

四角形 ODEC の内角の和は360°より.

$$\angle CED = 360 - \angle COD - \angle ODE - \angle OCE$$

= $360 - 80 - 90 - 110$
= 80°

(10) △ABC, △OABは二等辺三角形なので,

$$\angle CAB = (180 - 54) \div 2$$

= 63°
 $\angle OAB = (180 - 140) \div 2$
= 20°

円周角の定理より.

$$\angle ADB = \frac{1}{2} \angle AOB$$
$$= \frac{1}{2} \times 140$$
$$= 70^{\circ}$$

△ACDの外角だから,

$$\angle \text{CAD} + 54 = 70$$

$$\angle CAD = 16^{\circ}$$

よって.

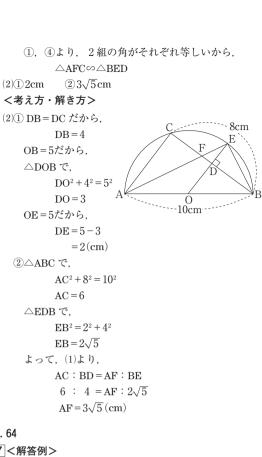
$$\angle$$
 OAD = \angle CAB - \angle CAD - \angle OAB
= $63 - 16 - 20$
= 27°

P. 64

6 <解答例>

(1) △AFCと△BEDにおいて. ∠FACと∠EBDは、ĈEに対する円周角だから、 ABは、半円の直径だから、 $\angle ACF = 90^{\circ} \cdots (2)$ 一方、OD LBC だから、 ②. ③より.

 $\angle ACF = \angle BDE \cdots (4)$



7 <解答例>

- $(b)\triangle AEG$ (1) $(a) \triangle EDG$ (逆でも可)
- (2) 選択した三角形が△EDGのとき 証明 △ADE と△EDG において、 2つの三角形に共通な角だから、

 $\angle ADE = \angle EDG$ (1)

AB は半円の直径だから.

 $\angle AED = \angle ACB = 90^{\circ} \quad \cdots (2)$

一方、EF // CB だから、

①. ④より. 2組の角がそれぞれ等しいから. $\triangle ADE \circ \triangle EDG$

選択した三角形が△AEGのとき

証明 △ADE と△AEG において.

2つの三角形に共通な角だから.

 $\angle DAE = \angle EAG$ (1)

AB は半円の直径だから、

 $\angle AED = \angle ACB = 90^{\circ} \quad \dots \qquad (2)$

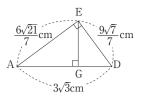
一方、EF // CB だから // AGF = // ACB = 90°

①, ④より, 2組の角がそれぞれ等しいから, $\triangle ADE \Leftrightarrow \triangle AEG$

(3) $\frac{12}{7}$ cm

<考え方・解き方>

 \triangle ADE. \triangle AGE. △DGE はすべて 相似である。



(3)△ABC で.

$$AC^2 + 6^2 = 12^2$$

$$AC = 6\sqrt{3}$$

よって、
$$CD=3\sqrt{3}$$
なので、 $\triangle BCD$ で、

$$DB^2 = (3\sqrt{3})^2 + 6^2$$

$$DB = 3\sqrt{7}$$

$$AD = 3\sqrt{3}$$
 だから、 $\triangle ADE \triangle \triangle BDC$ より、

$$AE = \frac{6\sqrt{21}}{7}$$
, $ED = \frac{9\sqrt{7}}{7}$

$$AG = \frac{12\sqrt{3}}{7}$$

GF // CB だから、

$$AG : AC = GF : BC$$

$$\frac{12\sqrt{3}}{7}$$
: $6\sqrt{3} = GF$: 6

$$GF = \frac{12}{7}(cm)$$

P. 65

8 <解答例>

(1) 証明 △ABC と△CDO において、

△OAC は OA = OC の二等辺三角形だから,

AB は半円の直径だから、

一方, DOLOC だから,

$$\angle COD = 90^{\circ}$$
(3)

②. ③より.

①, ④より,2組の角がそれぞれ等しいから,

△ABC∽△CDO

(2)
$$1 \frac{9\sqrt{2}}{4} \text{ cm}$$
 $2 \frac{7\sqrt{2}}{9} \text{ cm}^2$

<考え方・解き方>

(2)(1)△ABC より.

$$AC^2 = 6^2 - 2^2$$

$$= 32$$

$$AC = \pm 4\sqrt{2}$$

AC > 0なので、 $AC = 4\sqrt{2}$

(1)より、

AB : CD = AC : CO

6 : CD = $4\sqrt{2}$: 3

$$CD = \frac{9\sqrt{2}}{4}(cm)$$

(2)②点OからACに垂線をひき、交点をHとする。 中点連結定理より.

$$OH = 2 \times \frac{1}{2} = 1$$

(2)(1)より.

$$AD = 4\sqrt{2} - \frac{9\sqrt{2}}{4} = \frac{7\sqrt{2}}{4}$$
 よって、 $\triangle AOD$ の面積は、
$$\frac{7\sqrt{2}}{4} \times 1 \times \frac{1}{2} = \frac{7\sqrt{2}}{8} (cm^2)$$

9 <解答例>

(1) 証明 △EAD と△AGD において.

2つの三角形に共通な角だから.

$$\angle ADE = \angle GDA$$
①

∠AED はÂDに対する円周角で、∠AOD=90°だ から

一方,四角形 OACD は正方形で,AD は対角線だ から.

$$\angle GAD = 45^{\circ}$$
(3)

②. ③より.

- ①、④より、2組の角がそれぞれ等しいから、 △EAD∽△AGD
- (2) ① $\frac{9\sqrt{10}}{5}$ cm ② $\frac{16}{5}$ cm²

<考え方・解き方>

(2)(1)△ODG より.

$$GD^2 = 3^2 + 1^2$$

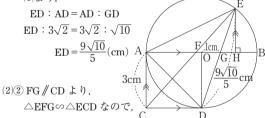
$$GD = \pm \sqrt{10}$$

GD>0なので、GD= $\sqrt{10}$

OA は半径なので、 $6 \div 2 = 3$ 。また、 $\triangle OAD$ は直 角二等辺三角形なので.

$$AD = OA \times \sqrt{2}$$
$$= 3\sqrt{2}$$

(1)より、



FG : CD = EG : EDFG: $3 = (\frac{9\sqrt{10}}{5} - \sqrt{10}) : \frac{9\sqrt{10}}{5}$

$$FG = \frac{4}{2}$$

よって.

$$AF = (3+1) - \frac{4}{3} = \frac{8}{3}$$

また.

$$CF : EF = DG : EG$$

= $(9-4) : 4$
= $5 : 4$

点Eから線分ABに垂線をひき、垂線と線分ABの交 点をHとおく。

AC // EH より、△AFC∽△HFE なので、

AC : EH = CF : EF
3 : EH = 5 : 4
EH =
$$\frac{12}{5}$$

 $\triangle AFE = AF \times EH \times \frac{1}{2}$ \$\tag{7}\$\tag{7}\$

$$\frac{8}{3} \times \frac{12}{5} \times \frac{1}{2} = \frac{16}{5} (cm^2)$$

P. 66

10 <解答例>

(1) ア2組の辺の比とその間の角がそれぞれ等しい イ EF⊥AB だから.

④より.

$$\angle ADO = \angle EFO$$
6

対頂角は等しいから.

また、AO、EO はともに円の半径だから、

⑥より、△AOD と△EOF はともに直角三角形 であり、⑦、⑧より、斜辺と1つの鋭角がそれ ぞれ等しい。

(2) $\sqrt{6}$ (cm)

<考え方・解き方>

(2) AO は半径なので、

 $6 \div 2 = 3$

AD=CDより、点DはACの中点である。 中点連結定理より.

$$OD = \frac{1}{2}BC$$
$$= \frac{1}{2} \times 4$$
$$= 2$$

(1)\$ \emptyset , \triangle AOD \equiv \triangle EOF \Diamond \bigcirc \bigcirc

$$EO = AO = 3$$

$$OF = OD = 2$$

△EOF で三平方の定理より.

$$EF^{2} = EO^{2} - OF^{2}$$

= $3^{2} - 2^{2}$
= $9 - 4$

$$=9-2$$

$$EF = \sqrt{5}$$

$$3 - 2 = 1$$

△EBFで、三平方の定理より、

$$BE^{2} = EF^{2} + BF^{2}$$

$$= (\sqrt{5})^{2} + 1^{2}$$

$$= 5 + 1$$

$$= 6$$

$$BE = \sqrt{6} (cm)$$

11 <解答例>

(1) 証明 △ADC と△BGF において,

AB LDC だから、

 $\angle DCA = 90^{\circ}$

OF⊥BE だから.

①. ②より.

∠DACと∠DEBはDBに対する円周角だから,

$$\angle DAC = \angle DEB \cdots 4$$

BG は円の接線で、AB は円の直径だから、

∠ABG=90° であって、①から DE $/\!\!\!/$ BG である。 よって、

 $\angle DEB = \angle GBF$

④, ⑤より,

$$\angle DAC = \angle GBF$$

③, ⑥より、2組の角がそれぞれ等しいから、 △ADC∞△BGF

(2) $12\sqrt{6}$ (cm) $2\frac{7\sqrt{15}}{6}$ (cm)

<考え方・解き方>

(2)① 2 点 O, E を結び△OCE をつくる。

 $AB = 10 \, \text{$^{\circ}$} \, \text{$^{\circ}$} \, \text{$^{\circ}$}$

OE = 5

また.

OC = OB - BC

=5-4

=1

よって、△OCE で三平方の定理より、

 $CE^2 = OE^2 - OC^2$

$$=5^2-1^2$$

=25-1

=24

 $CE = 2\sqrt{6} (cm)$

② ED⊥BC より、△BED は BE=BD の二等辺三角 形である。

よって.

 $CD = CE = 2\sqrt{6}$

△ADC で.

$$AD^{2} = AC^{2} + CD^{2}$$
$$= 6^{2} + (2\sqrt{6})^{2}$$

=60

 $AD = 2\sqrt{15}$

 $\triangle ACE \equiv \triangle ACD \ co$ c,

 \angle HAO = \angle EAC

AE⊥EB, HF⊥EBより, AE // HFで錯角は等しいので

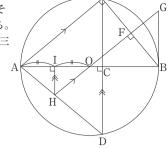
 \angle HOA = \angle EAC

これより、△HAO は HA = HO の二等辺三角形である。

点 H から線分 AO に垂線をひき、そ の交点を I とする。 △HAO は二等辺三 角形なので.

 $AI = AO \times \frac{1}{2}$

$$=5 \times \frac{1}{2}$$
$$=\frac{5}{2}$$



また、HI⊥AC、CD⊥ACよりHI∥DCなので、 △AHI∽△ADCである。

よって.

AD : DH = AC : IC

$$2\sqrt{15}$$
: DH = 6: $\left(6 - \frac{5}{2}\right)$

$$2\sqrt{15}$$
: DH = 6: $\frac{7}{2}$

$$DH = \frac{7\sqrt{15}}{6}(cm)$$

P. 68

12 <解答例>

(1) ア2組の辺とその間の角

イABは半円の直径だから、

$$\angle ADF = 90^{\circ}$$

⑤より、 ∠CED は∠AEO の対頂角だから、

$$\angle CED = 90^{\circ} \cdots \overline{7}$$

⑥, ⑦より,

$$\angle ADF = \angle CED$$
(8)

⑧, ⑨より, 2組の角がそれぞれ等しい。

(2) $\frac{7}{5}$ 倍

<考え方・解き方>

(2) \triangle ABC で中点連結定理より,OE = $\frac{1}{2}$ BC

$$3 \times \frac{1}{2} = \frac{3}{2}$$

また、DE=DO-OEより、

$$\frac{7}{2} - \frac{3}{2} = 2$$

 \angle DFE = \angle BFC

 $\angle DEF = \angle BCF = 90^{\circ}$

2 組の角がそれぞれ等しいので△DEF○△BCFである。よって、

EF : CF = DE : BC = 2 : 3

(1)より、AE=EC なので、

AE : EF : CF = 5 : 2 : 3

よって.

$$AF : EC = (AE + EF) : (EF + CF)$$

= $(5+2) : (2+3)$
= $7 : 5$

△AFD と△CDE の底辺をそれぞれ AF, EC とした ①、②より、2組の角がそれぞれ等しいので、 とき、2つの三角形の高さは等しいので、 △EAC∽△BAD $\triangle AFD : \triangle CDE = AF : EC = 7 : 5$ よって、(1)より、 したがって. △CDF∞△BAD… ii $7 \div 5 = \frac{7}{5}$ (倍) $\triangle EAC \ \angle \triangle EBD \ \vec{c}$. AB は直径なので、 P. 69 $\angle ACE = \angle BDE = 90^{\circ} \cdots (1)$ 13 <解答例> DC に対する円周角なので、 (1) 証明 △CDF と△EAC において. $\angle CAE = \angle DBE \cdots (2)$ AF⊥DF だから. ∠DFC=90°1 ①、②より、2組の角がそれぞれ等しいので、 $\triangle EAC \circ \triangle EBD$ AB は半円の直径だから、 よって、(1)より、 △CDF∽△EBD…iii ①. ②より. i, ii, iiiより, △CDFと相似な三角形は△DAF. $\angle DFC = \angle ACE \cdots 3$ △BAD. △EBD である。 また、 $\angle ACE = 90^{\circ}$ だから、 $\angle DCF = 90^{\circ} - \angle DCE \cdots (4)$ P. 70 $\angle AEC = 90^{\circ} - \angle CAE \cdots (5)$ 14 <解答例> ∠DCEと∠CAEは、それぞれBDとDCに対する円 (1) 対頂角だから. 周角で、 $\widehat{BD} = \widehat{DC}$ だから、 $\angle DCE = \angle CAE$ (6) ③. ④より. (4).
 (5).
 (6)より. $\angle DCB = \angle FED$ (5) △OBD は OB = OD の二等辺三角形だから. ③. ⑦より、2組の角がそれぞれ等しいから、 $\angle CBD = \angle EDF$ ······(6) $\triangle CDF \circ \triangle EAC$ ⑤. ⑥より、2組の角がそれぞれ等しい。 (2) $\triangle DAF$, $\triangle BAD$, $\triangle EBD$ (2) $1\frac{9}{4}$ $\frac{1}{1}$ $2\frac{5\sqrt{11}}{4}$ cm² (3) 説明 AB:AC=BE:EC=3:1であり. $EC = \frac{3\sqrt{2}}{2}$ cm。よって、 △EAC において、 三平 <考え方・解き方> (2)①△AOE, △DOC は合同な二等辺三角形だから, 方の定理より, EO = CO = 1 $AE = \frac{3\sqrt{6}}{2}$ cm よって、DE=5-1=4 $\pm c$. CB = 5 + 1 = 6△EAC∽△BAD だから、AE:AB=AC:AD △BDC ∞ △DFE で相似比6:4=3:2 よって、AD= $3\sqrt{6}$ cm よって,面積比は, $\triangle BDC$: $\triangle DFE = 3^2 : 2^2 = 9 : 4$ $\triangle EAC \otimes \triangle DAF \ the b$ したがって、 $9 \div 4 = \frac{9}{4}$ (倍)。 AC : AF = AE : AD = 1 : 2<考え方・解き方> ②①より、DF:DB=2:3なので、 (2)△CDF∞△EAC を利用するとよい。 DF: FB=2:1…ア \triangle EAC \land DAF \circlearrowleft . ここで、DE: DO=4:5より, (1)より. $\triangle DOF = \triangle DFE \times \frac{5}{4} = \frac{5\sqrt{11}}{2}$ $\angle ACE = \angle AFD = 90^{\circ} \cdots (1)$ 共通な角だから. $\mathcal{P} \downarrow h$, $\triangle BFO = \triangle DOF \times \frac{1}{2} = \frac{5\sqrt{11}}{4} (cm^2)_{\circ}$ $\angle EAC = \angle DAF \cdots (2)$ ①. ②より、2組の角がそれぞれ等しいので、 P. 71 $\triangle EAC \circ \triangle DAF$ 15 <解答例> よって、(1)より、 (1) 証明 △CDF∽△DAF··· i △ABC は直角二等辺三角形だから、 $\angle CBF = 45^{\circ}$ (1) AB は直径なので、 △ACD は直角二等辺三角形だから, $\angle ACE = \angle ADB = 90^{\circ} \cdots (1)$ $\angle DCH = 45^{\circ}$ (2) (1)より、 ①. ②より. $\angle CAE = \angle DAB \cdots (2)$

∠ACB=90°だから、	$AB^2 = AC^2 + BC^2$
∠BCF=90° - ∠ACF	$10^2 = 4^2 + BC^2$
∠ADC=90° だから,	BC>0より,
$\angle CDH = 90^{\circ} - \angle ADE \cdots 5$	$BC = 2\sqrt{21}$
∠ACF = ∠ADE だから、④、⑤より、 ∠BCF = ∠CDH ····································	① \sharp \mathfrak{h} , $\text{CF} = \frac{1}{2} \text{BC}$
③、⑥より、2組の角がそれぞれ等しいから、	$CF = \frac{1}{2} \times 2\sqrt{21}$
△BCF∞△CDH	2
(2) DH: $HG = 5:3$	$=\sqrt{21}$
<考え方・解き方>	また、FE=OE-OF
(2)△ABC∽△ACD より.	=5-2
AB : AC = BC : CD	= 3
$12:6\sqrt{2}=6\sqrt{2}:CD$	(1)より、△ACD∽△EFD だから、 CD:DF=AC:EF より、
CD = 6	$CD \cdot DF - AC \cdot EF + 3$, CD : DF = 4 : 3
△BCF∞△CDH より,	よって、 CF: DF = (CD + DF): DF = 7: 3
BC : CD = CF : DH	$\sqrt{21}$: DF = 7:3
$6\sqrt{2} : 6 = 3\sqrt{5} : DH$	
$DH = \frac{3\sqrt{10}}{2} \cdots (1)$	$DF = \frac{3\sqrt{21}}{7}(cm)$
△CDH∽△GDC より,	P. 72
DH : DC = DC : DG	17 <解答例 >
$\frac{3\sqrt{10}}{2}$: 6 = 6: DG	(1) 証明
_	△ABE と△BCG において,
$DG = \frac{12\sqrt{10}}{5} \cdots (2)$	AB は円の直径だから∠AEB=90°
①, ②より,	BG⊥CF だから∠BGC = 90°
	よって,
$HG = \frac{12\sqrt{10}}{5} - \frac{3\sqrt{10}}{2} = \frac{9\sqrt{10}}{10}$	$\angle AEB = \angle BGC = 90^{\circ}$
よって,	∠ABE と∠ACE はÂEに対する円周角だから、
DH: $HG = \frac{3\sqrt{10}}{2} : \frac{9\sqrt{10}}{10} = 5 : 3 $ となる。	∠ABE = ∠ACE············2
2 10 0.05.4.00	また
P. 71	$\angle ACE = \angle FCD + \angle ACF \cdots 3$
16 <解答例>	$\angle BCG = \angle FCD + \angle BCD$
(1) 証明	$\angle ACF = \angle BCD \ge 3$, (4 ± 1) ,
△ACD と△EFD において、	$\angle ACE = \angle BCG$
対頂角は等しいので、	②, ⑤ ₺ ʰ), ∠ABE = ∠BCG ····································
∠ADC = ∠EDF ······①	①, ⑥より, 2 組の角がそれぞれ等しいから,
AD は∠BAC の二等分線なので、	△ABE∞△BCG
$\angle CAD = \angle OAD$ 2	
\triangle OAE は OA = OE の二等辺三角形なので、	(2) $\frac{56}{25}$ cm
$\angle OAD = \angle FED$ ····································	<考え方・解き方>
②, ③より,	(2)△ABC でAB は直径だから、∠ACB=90°
$\angle CAD = \angle FED$	よって, 三平方の定理より,
①, ④より2組の角がそれぞれ等しいから,	$AC^2 + BC^2 = AB^2$
$\triangle ACD $ $\triangle EFD$	$6^2 + BC^2 = 10^2$
(2) ① 2 cm ② $\frac{3\sqrt{21}}{7}$ cm	$36 + BC^2 = 100$
1	$BC^2 = 64$
<考え方・解き方> (9/17/17) たか、A C // OF 、	$BC = \pm 8$
(2)①(1)より、AC // OF、点 O は AB の中点だから、 中点連結定理より、	BC>0 L 0, BC = 8
	次に、点 C から線分 AB に垂線をおろし、線分 AB
$OF = \frac{1}{2}AC$	との交点を点Hとおく。
t = 7 OR = 1 ×4 = 9() k to 7	△ABC と△ACH で、
よって、OF= $\frac{1}{2}$ ×4=2(cm)となる。	∠CAB = ∠CAH(共通)
②△ABCで、三平方の定理より、	∠ACB = ∠CHA = 90° (仮定)

よって、2組の角がそれぞれ等しいので、 BC : BE = AC : BO8 : BE = 6 : 5 $\triangle ABC \circ \triangle ACH$ 対応する辺の長さの比はすべて等しいので. $BE = \frac{20}{2}(cm)$ AB : AC = AC : AH10:6=6:AHP. 73 $AH = \frac{18}{-}$ 19 <解答例> (1) 証明 ここで、△ACD は、仮定より AC=CD=6の二等辺 △ADF と△ECB において. 三角形だから、AH=HDとなる。 ∠FAD と∠BEC は®Cに対する円周角だから、 よって、AD=2AH $AD = 2 \times \frac{18}{5} = \frac{36}{5}$ AE ∥FD だから. また、BD=AB-ADより、 $\angle EAB = \angle FDA \cdots (2)$ ∠EAB と∠BCE はBEに対する円周角だから. $BD = 10 - \frac{36}{5} = \frac{14}{5}$ さらに、△ACD と△EBD で、 ②. ③より. ∠CAD = ∠BED(BCの円周角) ∠ADC = ∠EDB(対頂角) ①、④より、2組の角がそれぞれ等しいから、 よって、2組の角がそれぞれ等しいので、 $\triangle ADF \circ \triangle ECB$ $\triangle ACD \circ \triangle EBD$ ②24倍 (2) $(1)2\sqrt{6}$ cm したがって、BD=BE= $\frac{14}{5}$ <考え方・解き方> (1)より、 $\triangle ABE \hookrightarrow \triangle BCG$ なので、 (2)① △ABC で AB は直径だから、∠ACB = 90° となる。 BE : CG = AB : BC三平方の定理より, $\frac{14}{\pi}$: CG = 10:8 $AC^2 + BC^2 = AB^2$ $AC^2 + 2^2 = 6^2$ $CG = \frac{56}{25}$ (cm) となる。 $AC^2 = 32$ AC>0より. P. 72 $AC = 4\sqrt{2}$ 18 <解答例> ここで、△EAC は AE = CE の二等辺三角形なの (1) 証明 で、点Eから線分ACに垂線をおろし、その交点 △ABC と△OEB において、 をHとすると、∠EHA=90°より、BC // EHとな AC ∥OE だから、 $\angle BAC = \angle EOB \cdots 1$ また、点 H は線分 AC の中点より、 線分 AB は円の直径だから、 $AH = \frac{1}{2}AC = \frac{1}{2} \times 4\sqrt{2} = 2\sqrt{2}$ $\angle ACB = 90^{\circ}$ (2) また、BC // EH なので、 BE は円の接線で、線分 AB は円の直径だから、 中点連結定理より、EH は線分 AB の中点 O を通 $\angle OBE = 90^{\circ} \quad \cdots \qquad (3)$ ③より. したがって、△ABCで中点連結定理より、 $\angle ACB = \angle OBE$ ①, ④より, 2組の角がそれぞれ等しいから, $OH = \frac{1}{2}BC = \frac{1}{2} \times 2 = 1$ △ABC∽△OEB また、円0の半径より、 (2) ① 6 cm OE = 3よって、EH = OH + OE = 1 + 3 = 4<考え方・解き方> したがって、△EHAで三平方の定理より、 (2)(1)∠ACB = 90° なので. $AE^2 = EH^2 + AH^2$ △ABC で三平方の定理より. $AE^2 = 4^2 + (2\sqrt{2})^2$ $AB^2 = AC^2 + CB^2$ $AE^2 = 24$ $10^2 = AC^2 + 8^2$ AE>0より, $AC^2 = 36$ $AE = 2\sqrt{6} (cm)$ AC>0より. ②BC // EH より、△DBC ∽△DOE なので、 AC = 6(cm)

-38 -

②AB = 10cm で点 O は円の中心なので、

また、(1)より、 $\triangle ABC \circ \triangle OEB$ なので、

BO=5cmとなる。

相似比は、BC:OE=2:3=CD:EDとなる。

また、FD // AE より、△CFD ∞ △CAE なので、

FD: AE = CD: CE

$FD: 2\sqrt{6} = 2:5$	5
	$=\frac{5}{2}(cm)$
$FD = \frac{4\sqrt{6}}{5}$	P. 74
(1)より、△ADF∞△ECBで、	21<解答例>
相似比は,FD:BC= $\frac{4\sqrt{6}}{5}$:2	(1) 証明
$=2\sqrt{6}:5$	△ABC と△ODE において、
よって,△ADF と△ECB の面積比は,	OE⊥DC だから、
	$\angle OED = 90^{\circ}$
$(2\sqrt{6})^2$: $5^2 = 24 : 25$ となり $\frac{24}{25}$ 倍。	∠ACB=90°だから、①より、
P. 74	$\angle ACB = \angle OED$ ······2
20<解答例>	AC は円 O の直径だから,
(1) 証明	$\angle ADC = 90^{\circ}$
△EFBと△DECにおいて、	OE⊥DCだから、③より、
EF⊥AB だから,	OF // AB
$\angle EFB = 90^{\circ}$	(4) ₺ り, ∠EOD = ∠ODA(5)
AC⊥DB だから,	△OAD は OA=OD の二等辺三角形であるから,
$\angle DEC = 90^{\circ}$	∠ODA=∠CAB
①, ②より,	5, 6 t h.
$\angle EFB = \angle DEC \cdots 3$	$\angle CAB = \angle EOD \cdots (7)$
∠EBFと∠DCE はDAに対する円周角だから,	 ②、⑦より、2組の角がそれぞれ等しいから。
$\angle EBF = \angle DCE \cdots 4$	△ABC∽△ODE
③, ④より、2組の角がそれぞれ等しいから,	(2) $1\frac{2\sqrt{5}}{3}$ cm $2\frac{5\sqrt{6}}{18}$ cm
△EFB∽△DEC	0 10
(2) ① $\frac{24}{5}$ cm ② $\frac{5}{2}$ cm	<考え方・解き方>
<考え方・解き方>	(2)①∠ACB=90°なので、
(2)①∠DEC=90° なので,	△ABC で三平方の定理より,
△DEC で三平方の定理より,	$AB^2 = AC^2 + BC^2$ $6^2 = 4^2 + BC^2$
$DC_3 = DE_3 + EC_3$	BC>0より、
$DC^2 = 4^2 + 3^2$	$BC = 2\sqrt{5}$
$DC^2 = 25$	また, 円 O の半径より, OD=2
DC>0より,	よって、 (1) より、 $\triangle ABC$ $\circ \triangle ODE$ なので、
DC=5	BC : DE = AB : OD
また、(1)より、△EFB∽△DEC なので、	$2\sqrt{5} : DE = 6 : 2$
EF : DE = EB : DC EF : 4 = 6 : 5	$DE = \frac{2\sqrt{5}}{3}(cm)$
$EF = \frac{24}{5}(cm)$	②(1)より、△ABC∽△ODE なので、 AC:OE = AB:OD
②(1)より、△EFB∽△DEC なので、	4: OE = 6: 2
対応する角は等しいので,	
∠FEB = ∠EDC··· i	$OE = \frac{4}{3}$
対頂角は等しいので、	△CAD で中点連結定理より,
∠FEB=∠GED··· ii i , ii より,	$AD = OE \times 2$
「	$=\frac{4}{3}\times 2$
GD = GE··· iii	ô
また、iiiと△DECにおいて∠DEC=90°より、点	$=\frac{8}{3}$
Gは、線分 DC を直径とする円の中心となる。	よって,
よって,	BD = AB - AD
$GE = DC \times \frac{1}{2}$	$=6-\frac{8}{3}$
$=5\times\frac{1}{2}$	$=\frac{10}{3}$
$-3 \wedge \frac{1}{2}$	3 △DBE で三平方の定理より,
	△DDE ヘニ 「月♥ル代生まり、

$$\mathbf{B}\mathbf{E}^2 = \mathbf{D}\mathbf{E}^2 + \mathbf{B}\mathbf{D}^2$$

$$BE^2 = (\frac{2\sqrt{5}}{3})^2 + (\frac{10}{3})^2$$

BE>0より,

$$BE = \frac{2\sqrt{30}}{3}$$

次に、(1)より、OF // AB なので、

CE : ED = CF : FB = CO : OA = 1 : 1

また、AD:BD=
$$\frac{8}{3}$$
: $\frac{10}{3}$ =4:5より、

$$\triangle$$
BFE = \triangle EBC $\times \frac{1}{2}$

$$= (\triangle DBC \times \frac{1}{2}) \times \frac{1}{2}$$

$$= (\triangle ABC \times \frac{5}{9}) \times \frac{1}{2} \times \frac{1}{2}$$

$$= \triangle ABC \times \frac{5}{36}$$

$$= (\frac{1}{2} \times BC \times AC) \times \frac{5}{36}$$

$$= \frac{1}{2} \times 2\sqrt{5} \times 4 \times \frac{5}{36}$$

$$=\frac{5\sqrt{5}}{9}$$

$$\triangle BFE = \frac{1}{2} \times BE \times GF$$

$$\frac{5\sqrt{5}}{9} = \frac{1}{2} \times \frac{2\sqrt{30}}{3} \times GF$$

$$GF = \frac{5\sqrt{6}}{18}(cm)$$

第6講座 空間図形

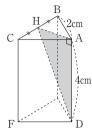
P. 75

1 <解答例>

- (1) $\sqrt{19}$ cm (2) 144π cm³ (3) $a = \frac{5}{3}$
- (4) $24 \pi \text{ cm}^3$

<考え方・解き方>

(1) \triangle ABC は正三角形だから AH= $\sqrt{3}$ なので、 \triangle AHD について、 三平方の定理を用いて、 4^2+ $(\sqrt{3})^2=$ HD 2 となる。よって、HD= $\sqrt{19}$ cm となる。



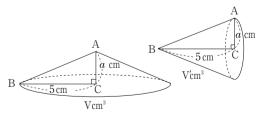
P Q h $\frac{6}{5}r$ $100\pi \text{ cm}^3$ $x\text{cm}^3$

上図のように、もとの円錐 P の高さを h、底面の半径を r とすると、底面の半径を 20% だけ長くした円錐 Q の底面の半径は、 $r \times \left(1 + \frac{20}{100}\right) = \frac{6}{5}r$ と表せる。よって、

P の体積:Q の体積 = $\frac{1}{3} \times \pi r^2 \times h$: $\frac{1}{3} \times \frac{36}{25} \pi r^2 \times h$ = $1:\frac{36}{25}$ = 25:36

よって.

P の体積: Q の体積 = 25: 36 100 π: x = 25: 36 x = 144 π (cm³)



$$\begin{aligned} \mathbf{V} &= \frac{1}{3} \times 25\pi \times a & \mathbf{V}' &= \frac{1}{3} \times \pi a^2 \times 5 \\ &= \frac{25\pi a}{3} \cdots \text{ } \mathbf{1} & = \frac{5\pi a^2}{3} \cdots \text{ } \mathbf{2} \end{aligned}$$

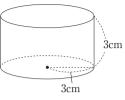
 $(1)=(2)\times3$ \mathcal{L}

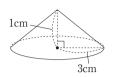
$$\frac{25\pi a}{3} = \frac{5\pi a^2}{3} \times 3$$

$$5a = 3a^{2}$$

 $3a^{2} - 5a = 0$
 $a(3a - 5) = 0$
 $a = 0, \frac{5}{3}$ $a > 0$ なので、 $a = \frac{5}{3}$

(4) 辺 AB を軸として1回転させてできる立体は、下の円柱から円錐をひいて求める。





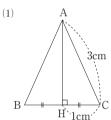
円柱の体積 = $9\pi \times 3 = 27\pi$ 円錐の体積 = $\frac{1}{3} \times 9\pi \times 1 = 3\pi$ よって、 $27\pi - 3\pi = 24\pi$ (cm³)

P. 76

2 <解答例>

- $(1) \quad 2\sqrt{2} \ cm$
- (2) $\frac{6\sqrt{11}}{11}$ cm
- $(3)\quad \frac{32\sqrt{2}}{11}\,cm^3$

<考え方・解き方>



△ABC は二等辺三角形 なので、∠AHC=90°に なるから、三平方の定 理より、

$$AH^2 + CH^2 = AC^2$$
 $AH^2 + 1^2 = 3^2$ よって、 $AH = 2\sqrt{2}$ (cm)

_____2√2cm-__H (1)の結果を用いて,

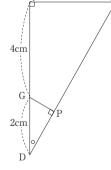
△ADH で三平方の定理 より,

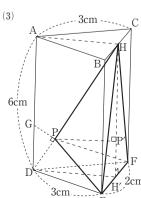
 $AH^2 + AD^2 = HD^2$ $(2\sqrt{2})^2 + 6^2 = HD^2$ よって、 $HD = 2\sqrt{11}$ ここで、

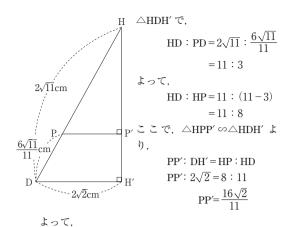
△ADH∽△PDG より,

DH: DG = AD: PD $2\sqrt{11}$: 2 = 6: PD PD = $\frac{6\sqrt{11}}{11}$ (cm)

三角錐の PEFH は 左図の太線の図形 になり、底面を△ HEFにすると、高 さは PP′となる。







$$P - EFH = \frac{1}{3} \times \triangle HEF \times PP'$$
$$= \frac{1}{3} \times (\frac{1}{2} \times 2 \times 6) \times \frac{16\sqrt{2}}{11}$$
$$= \frac{32\sqrt{2}}{11} (cm^3)$$

P. 76

3 <解答例>

- (1) $2\sqrt{2}$ cm (2) $\frac{21\sqrt{6}}{2}$ cm²
- (3) $\frac{35\sqrt{2}}{4}$ cm³

<考え方・解き方>

(1) PC = AD = 3 ϕ ϕ . BP=1 だから. △ABP で.

$$AP^2 + BP^2 = AB^2$$

 $AP^2 + 1^2 = 3^2$

よって. $AP = 2\sqrt{2} (cm)$ ---3cm $\frac{3\sqrt{6}}{2}$ cm

 $BC^2 + DC^2 = BD^2$ $4^2 + (2\sqrt{2})^2 = BD^2$ BD = $2\sqrt{6}$

△QBP∽△QDA より, BQ:DQ=BP:DA=1:3よって.

$$QD = \frac{3}{4}BD = \frac{3\sqrt{6}}{2}$$

FH=BD= $2\sqrt{6}$ だから、

$$\begin{aligned} \text{QFHD} &= (\text{QD} + \text{FH}) \times \text{DH} \times \frac{1}{2} \\ &= (\frac{3\sqrt{6}}{2} + 2\sqrt{6}) \times 6 \times \frac{1}{2} \\ &= \frac{21\sqrt{6}}{2} (\text{cm}^2) \end{aligned}$$

(3)求める四角錐 RQFHD の高さは RS になる。

DB: RB = DC: RS

$$2\sqrt{6}: \frac{5}{2} = 2\sqrt{2}: RS$$

RS = $\frac{5\sqrt{3}}{6}$

(2)より、底面積 QFHD =
$$\frac{21\sqrt{6}}{2}$$
だから、
RQFHD = $\frac{1}{3} \times \frac{21\sqrt{6}}{2} \times \frac{5\sqrt{3}}{6}$
= $\frac{35\sqrt{2}}{4}$ (cm³)

P. 77

4 <解答例>

- (1) $96 \pi \text{ cm}^3$ (2) $4\sqrt{3} \text{ cm}$ (3) $4\sqrt{30} \text{ cm}^2$ <考え方・解き方>
- $(2)\triangle OAM$ \circlearrowleft , $\angle OMA = 90^{\circ}$, OA:OM=2:1だから、 $AM = 2\sqrt{3}$ よって.

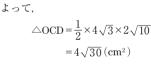
$$AB = 2AM$$
$$= 4\sqrt{3} (cm)$$

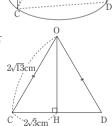
(3)△OAC で. $4^2 + 6^2 = OC^2$ $OC = 2\sqrt{13}$

> また、(2)より、 $CD = AB = 4\sqrt{3}$ よって、CH=DHだから、

 $CH = 2\sqrt{3}$ △OCH で,

 $(2\sqrt{3})^2 + OH^2 = (2\sqrt{13})^2$ $OH = 2\sqrt{10}$





2cm

P. 77

6cm

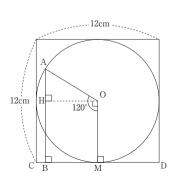
5 <解答例>

(1) 9cm (2) ① $27\sqrt{3} \text{ cm}^3$ ② $\frac{9}{4} \text{ cm}$

<考え方・解き方>

- (1)立体を球の中心O と底面の直径CDを 通る平面で切ると. 右のような断面図 になる。 △OAHで
 - \angle AOH = 30°.
- OA = OM = 6 xo.

AH = 3HB = OM = 6 xOC.



$$AB = 3 + 6$$
$$= 9 (cm)$$

(2)(1)P-ABMの体積が 最大になるのは、 右 図のように∠BMP= 90°のときで、(1)より、 AB = 9, $BM = 3\sqrt{3}$, PM = 6だから.

$$P-ABM$$

$$= \frac{1}{3} \times \triangle ABM \times PM$$

$$1 \times (1 \times 2 \times 72 \times 0)$$

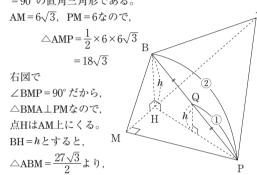
$$= \frac{1}{3} \times \triangle ABM \times PM$$

$$= \frac{1}{3} \times \left(\frac{1}{2} \times 3\sqrt{3} \times 9\right) \times 6$$

$$= 27\sqrt{3} \text{ (cm}^3)$$

②面ABMOと線分PMは垂直なので△AMP は∠AMP =90°の直角三角形である。

120°C O



$$\frac{1}{2} \times AM \times h = \frac{27\sqrt{3}}{2}$$
$$\frac{1}{2} \times 6\sqrt{3} \times h = \frac{27\sqrt{3}}{2}$$
$$h = \frac{9}{2}$$

$$\frac{9}{2}$$
: $h' = 2$: 1

$$h' = \frac{9}{4}$$

よって、点Qから平面AMPに下した垂線の長さは $\frac{9}{4}$ cmである。

P. 78

6 <解答例>

(1) $2\sqrt{13}$ cm (2) $\frac{8}{3}$ cm

(3) AQ : QE = 5 : 9 (4) $\frac{100}{7}$ cm³

<考え方・解き方>

(1)△ABC で.

$$AB^{2} + BC^{2} = AC^{2}$$

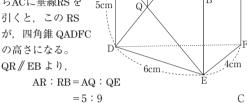
 $6^{2} + 4^{2} = AC^{2}$
 $AC = 2\sqrt{13}$ (cm)

 $PB = 6 \times \frac{4}{\Omega}$

$$PB = 6 \times \frac{1}{9}$$
$$= \frac{8}{3} (cm)$$

(3) △QAD∞△QEC より. AQ : QE = AD : EC

(4)点QからABに垂線 QRを引き, 点Rか らACに垂線RS を 引くと、この RS が. 四角錐 QADFC の高さになる。



 $2\sqrt{13}$ cm

4cm

4cm

AB=6cm だから、
$$AR=6 \times \frac{5}{14}$$

$$=\frac{15}{7}$$

△ARS∽△ACB より. AR : AC = RS : CB

$$\frac{15}{7} : 2\sqrt{13} = RS : 4$$

$$RS = \frac{30}{7\sqrt{13}}$$

よって.

$$\begin{aligned} \text{QADFC} = & \frac{1}{3} \times (5 \times 2\sqrt{13}) \times \frac{30}{7\sqrt{13}} \\ = & \frac{100}{7} (\text{cm}^3) \end{aligned}$$

P. 79

7 <解答例>

- (1) $64 \pi \text{ cm}^3$
 - (2) 12cm
- (3) (1)3cm

 $237 \pi \text{ cm}^3$

<考え方・解き方>

(2)円柱と円錐の体積が等しいから、(1)より、

$$\frac{1}{3} \times 16 \pi \times AB = 64 \pi$$

$$AB = 12 (cm)$$

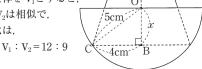
$$(3)① \triangle OBC で,$$

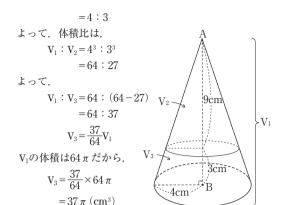
$$OC^2 = BC^2 + BO^2$$

$$5^2 = 4^2 + x^2$$

$$x = \pm 3$$
よって、 $OB = 3 (cm)$
②円錐全体を V_1 とすると、
$$V_1$$
と V_2 は相似で、
$$\sqrt{5cm}$$

相似比は.





P. 80

8 <解答例>

- (1) 12cm
- (2) $288 \pi \text{ cm}^3$ (3) $8 + 4\sqrt{3} \text{ cm}$

(4) 96cm³

<考え方・解き方>

(1)図4より、

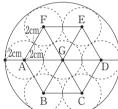
図 4

図 5

$$2 \times 6 = 12 \text{ (cm)}$$

(2)(1)より、球の半径は 6だから、

$$\frac{4}{3}\pi \times 6^3 = 288\pi \text{ (cm}^3\text{)}$$



6cm....

S

(3)**図5**で、PO=8. PQ=4 だから, $\triangle POQ$ \mathfrak{C} .

$$QO^2 + 4^2 = 8^2$$

 $QO = 4\sqrt{3}$

RQ=2, OS=6 だから,

円柱の高さ $RS = 2 + 4\sqrt{3} + 6$

 $=8+4\sqrt{3}$ (cm)

(4)正六角錐の底面は図4 の正六角形 ABCDEF なので、

$$ABCDEF = \triangle AGF \times 6$$
$$= \frac{1}{2} \times 4 \times 2\sqrt{3} \times 6$$
$$= 24\sqrt{3}$$

高さは図5のQO= $4\sqrt{3}$ なので、

O-ABCDEF =
$$\frac{1}{3} \times 24\sqrt{3} \times 4\sqrt{3}$$

= $96 \text{ (cm}^3)$

P. 81

9 <解答例>

- (1) 辺CF, 辺DF, 辺EF,
- (2) $\mathcal{T} 9^2 (8 x)^2$ 1/2
- (3) $60 \, \pi \, \text{cm}^3$

<考え方・解き方>

(2)**図 1** で、△DPF で、三 平方の定理より.

 $DP^2 = 9^2 - (8 - x)^2 \cdots |\mathcal{T}|$

となる。これより,

 $7^2 - x^2 = 9^2 - (8 - x)^2$

という方程式ができる。 これを解くと.

 $x = 2 \cdots |\mathcal{I}|$

が求められる。

(3)(2) \downarrow)

$$DP^2 = 9^2 - (8 - 2)^2$$
= 45

$$DP = \pm 3\sqrt{5}$$

DP>0 α 0 σ 0, DP= $3\sqrt{5}$ σ 5 σ 5 σ 5 σ 5.

 \triangle ADP \mathfrak{C} .

$$AP^2 = 6^2 + (3\sqrt{5})^2$$

= 81

 $AP = \pm 9$

AP>0なので、AP=9である。

図2で、点Dから辺APに垂線を引き、垂線と辺 AP との交点を O とする。

図 3

図 1

7cm

図 2 A

6cm

9cm

9cm

9cm

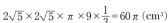
△ADP で.

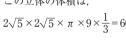
$$9 \times DO \times \frac{1}{2} = 6 \times 3\sqrt{5} \times \frac{1}{2}$$

 $DO = 2\sqrt{5}$

△ADP を辺 AP を軸とし て1回転させると、図3 のような立体ができる。

この立体の体積は,





P. 82

10 <解答例>

- (1) ①4cm
- ② $\frac{32}{2}$ cm³
- (2) $(1)\frac{3}{2}$ cm
- $2\frac{3\sqrt{3}}{2}$ cm

<考え方・解き方>

 $(1)(1) AP = 2 \sharp b$, OP = 6 - 2 = 4よって.

OA : OP = 6 : 4 = 3 : 2

OB : OD = 3 : 2

∠AOB = ∠POD(共通な角)

より、△OAB ∽△OPD である。

よって、AB: PD=3:2より、

$$PD = 6 \times \frac{2}{3} = 4$$
 (cm)

②(1)①より、

OA : OP = OC : OE = 3 : 2

∠AOC = ∠POE(共通な角)

より、△OAC ∽△OPE である。 よって,

 $PE = 6 \times \frac{2}{3} = 4$

三角錐 OPDE は底面を△PDE としたとき、高 さ OP となるので、

$$\frac{1}{3} \times \left(4 \times 4 \times \frac{1}{2}\right) \times 4 = \frac{32}{3} \ (cm^3)$$

(2)(1) AP=x, OP=6-x とおく。

△OPD は底辺を OP としたとき。高さが4cm になるので、その面積を x を使って表すと、

$$(6-x) \times 4 \times \frac{1}{2} = 12 - 2x$$

三角錐 OPDE は底面を△OPD としたとき、高 さは4cmとなるので、その体積をxを使って 表すと.

$$\frac{1}{3}$$
 × $(12-2x)$ × $4 = 16 - \frac{8}{3}x$

三角錐 OABC の体積は、

$$\frac{1}{3} \times \left(6 \times 6 \times \frac{1}{2}\right) \times 6 = 36$$

三角錐 OPDE の体積が三角錐 OABC の体積の $\frac{1}{2}$ になればよいので、

$$16 - \frac{8}{3}x = 36 \times \frac{1}{3}$$

これを解いて.

$$x = \frac{3}{2}$$
 (cm)

- $2\triangle OAB = \triangle OAC = \triangle ABC \downarrow 0$, BC = OC = OBなので、△OBC は正三角形で、△OBC ∞△ ODE なので、 △ODE も正三角形である。
 - (1)①より、OB:OD=3:2で、△OAB は直角 二等辺三角形なので,

$$OD = 6\sqrt{2} \times \frac{2}{3} = 4\sqrt{2}$$

DE の中点を M とする。 \triangle ODM は $1:2:\sqrt{3}$ の 直角三角形なので

回用三角形なので、

$$OM = 4\sqrt{2} \times \frac{\sqrt{3}}{2} = 2\sqrt{6}$$
よって、 $\triangle ODE$ の面積は、

$$4\sqrt{2} \times 2\sqrt{6} \times \frac{1}{2} = 8\sqrt{3}$$

求める長さをhとおく。このhは三角錐 OPDE で、△ODE を底面としたときの高さである。

よって、
$$(2)$$
①より、
$$\frac{1}{3} \times 8\sqrt{3} \times h = 36 \times \frac{1}{3}$$
これを解いて、

$$h = \frac{3\sqrt{3}}{2}(\text{cm})$$

P. 83

11 <解答例>

- (1) $4\sqrt{2}$ cm
- (2) 4cm
- (3) $(1)12 \pi \text{cm}^2$ $(2)2\sqrt{19}$ cm

<考え方・解き方>

(1)**図2**で、 \triangle ABM より、

$$AM^2 = 6^2 - 2^2$$

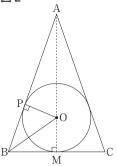
= 32

 $AM = \pm 4\sqrt{2}$

AM>0なので、AM= $4\sqrt{2}$ (cm)

(2)図2で球の中心をOとする。

図 2



△BMO と△BPO で.

MO = PO

 $\angle BMO = \angle BPO = 90^{\circ}$

BO は共通

直角三角形の斜辺と他の1辺がそれぞれ等しいの で、 \triangle BMO ≡ \triangle BPO である。よって、

BP = BM = 2

したがって.

AP = 6 - 2 = 4 (cm)

(3)①おうぎ形の中心角を a とおく。おうぎ形の弧の 長さと底面の円の円周の長さは等しいので.

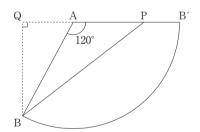
$$2\times 6\times \pi \times \frac{a}{360} = 2\times 2\times \pi$$

これを解いて、a=120

したがって、おうぎ形の面積は,

$$6 \times 6 \times \pi \times \frac{120}{360} = 12 \pi \text{ (cm}^2\text{)}$$

② BP が最短になるには、BP が直線であればよい ので、下図のようになる。また、線分AB′の延 長線上に、AB´⊥BQとなる点Qをとる。



△ABQ は30°, 60°, 90°の直角三角形なので,

$$BQ = 6 \times \frac{2}{\sqrt{3}} = 3\sqrt{3}$$

$$AQ = 6 \times \frac{1}{2} = 3$$

△PBQ より.

$$PB^2 = 7^2 + (3\sqrt{3})^2$$

=76

 $PB = \pm 2\sqrt{19}$

PB>0 なので、PB= $2\sqrt{19}$ (cm)

P. 84

12 <解答例>

(1) $\frac{9}{4}$ cm (2) $\frac{9}{2}$ cm³

(3) AQ : QP = 4 : 11

<考え方・解き方>

(1)△ABP∽△CBAより.

BP : BA = AB : CB

BP: 3=3:4

$$BP = \frac{9}{4}(cm)$$

 $(2)\triangle ABP = \frac{1}{2} \times BP \times AB = \frac{1}{2} \times \frac{9}{4} \times 3 = \frac{27}{8} (cm^2)$. \updownarrow \supset

て、三角錐 EABP= $\frac{1}{2}$ ×△ABP×BE= $\frac{1}{2}$ × $\frac{27}{8}$ ×4= $\frac{9}{2}$

(3)三角柱 ABC - DEF = $\frac{1}{2} \times 3 \times 4 \times 4 = 24$ (cm³)。三角錐

EABQ =
$$24 \times \frac{1}{20} = \frac{6}{5}$$
 (cm³)。ここで、三角錐 EABQ:

三角錐 EABP = \triangle ABQ : \triangle ABP = AQ : AP = $\frac{6}{5}$: $\frac{9}{2}$ =

 $4:15_{\circ}$ \$< 7. AQ: QP=4:15-4=4:11

P. 85

13 <解答例>

- (1) 2cm
- (2) $3\sqrt{5}$ cm
- (3) $4\sqrt{5}$ cm²

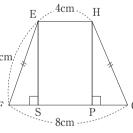
<考え方・解き方>

(1)右図において.

△EFS≡△HGPとなる 7cm/

ので、SF=PGo

 $PG = (8-4) \div 2 = 2 \text{ (cm)} \text{ F}$



(2)右上図の△HPGで三平方の定理より、

 $HP^{2} + PG^{2} = HG^{2}$

 $HP^2 + 2^2 = 7^2$

HP>0より.

 $HP=3\sqrt{5}$ となる。

(3)右図において.

かにおいて、

$$\triangle$$
EFH = $\frac{1}{2}$ × EH × HP
= $\frac{1}{2}$ × 4 × 3 $\sqrt{5}$
= $6\sqrt{5}$ F

ここで、 $\triangle QHE \circ \triangle QFG$ で、

相似比は、HE:FG=4:8=1:2=QH:QF。

よって、FH: QF = QH + QF: QF = (1+2): 2=3:2

となる。

したがって.

 \triangle EFQ= $\frac{2}{3}$ \triangle EFH= $\frac{2}{3}\times6\sqrt{5}=4\sqrt{5}$ (cm²) となる。

(4)右図において

(3) \sharp \mathfrak{h} EQ : QG = 1 : 2

なので、CA=3とおける。

△RAC∽△RQE で

相似比は.

CA : EQ = 3 : 1

=AR : QR

△QRT∽△QAE の相似比は,

QR : AQ = QR : AR + QR

=1:3+1

=1:4となるので.

RT : AE = 1 : 4

RT:10=1:4

 $RT = \frac{5}{2}$

したがって、求める三角錐 REFQ の体積は、

 $\frac{1}{2} \times \triangle EFQ \times RT = \frac{1}{2} \times 4\sqrt{5} \times \frac{5}{2} = \frac{10\sqrt{5}}{2} (cm^3) \ge 7$

10cm

P. 86

14 <解答例>

- (1) $9\sqrt{3} \pi \text{ cm}^3$ (2) $18 \pi \text{ cm}^2$ (3) $\frac{3\sqrt{3}}{2} \text{ cm}$

R

G

(4) $\frac{\sqrt{3}}{2} \pi \text{ cm}^3$

<考え方・解き方>

(1)図1で三平方の定理より,

 $OP^2 + 3^2 = 6^2$

OP>0より.

 $OP = 3\sqrt{3}$

よって、容器 A の容積は、

$$\frac{1}{3} \times \pi \times 3^2 \times 3\sqrt{3} = 9\sqrt{3} \pi \ (\text{cm}^3)$$

(2)容器 A の側面のおうぎ形の中心角を a とすると.

$$a = 360 \times \frac{2\pi\times3}{2\pi\times6} = 180^{\circ}$$
 となる。

よって、容器 A の側面積は、

$$\pi \times 6^2 \times \frac{180}{360} = 18 \pi \text{ (cm}^2\text{)}$$

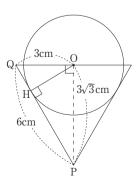
(3)右図において.

△OPQ の面積より、

$$\frac{1}{2} \times OQ \times OP = \frac{1}{2} \times PQ \times OH$$

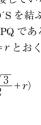
$$\frac{1}{2} \times 3 \times 3\sqrt{3} = \frac{1}{2} \times 6 \times \text{OH}$$

$$OH = \frac{3\sqrt{3}}{2}(cm)$$



(4)右図において.

球 C の中心を O'とおき, 容器Aと球Cが接している 点をSとして、O'Sを結ぶ。 このとき、O'S⊥PQ である。 球 C の半径 O'S=r とおくと. O'P = OP - OO'



.3cm .

$$= 3\sqrt{3} - (\frac{3\sqrt{3}}{2} + r)$$
$$= \frac{3\sqrt{3}}{2} - r$$

△OPQ∽△SPO′ & り.

OQ : O'S = PQ : O'P

$$3: r=6: \left(\frac{3\sqrt{3}}{2} - r\right)$$
$$r = \frac{\sqrt{3}}{2}$$

よって、球Cの体積は、
$$\frac{4}{2}\pi \times (\frac{\sqrt{3}}{2})^3 = \frac{\sqrt{3}}{2}\pi \text{ (cm}^3)$$

P. 87

15 <解答例>

- (1) ① $2\sqrt{5}$ cm ② $\frac{1}{4}$ 倍

く考え方・解き方>

(1)①点Fは、辺CDの中点より、FD=2cm となる。 △BCD は∠BDC=90°の直角二等辺三角形なの

三平方の定理より.

 $BF^2 = BD^2 + FD^2$

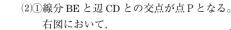
 $BF^2 = 4^2 + 2^2$

BF>0より.

 $BF = 2\sqrt{5} (cm)$

② CF = DF より、△BCF の面積は、△BCD の面積 の $\frac{1}{2}$ となる。 \triangle ACD で点 E, F はそれぞれ辺 AC, CDの中点なので、中点連結定理より、EF // AD となり、辺EFは底面BCDに垂直で、EF= $\frac{1}{2}$ AD となる。よって、三角すい EBCF の体積は、 三角すい ABCD に比べて、底面積と高さがそれ \tilde{c} $n\frac{1}{2}$ cn \tilde{c} ,

 $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ (倍)となる。



Eから CD に平行な線をひき、

AD との交点をRとする。

△ACD で中点連結定理より、

$$\mathbf{E}\mathbf{R} = \frac{1}{2}\mathbf{C}\mathbf{D} = \frac{1}{2} \times 4 = 2 \quad \mathbf{C}$$

また、Rは辺ADの 中点より.

DR = 2

 $\cdot r$ cm

△BER∽△BPD & n.

PD : ER = BD : BR

PD: 2=4:6

$$PD = \frac{4}{3}(cm)$$

②三角すい EABD の体積は、

$$\frac{1}{3} \times \triangle ABD \times ER$$

$$= \frac{1}{3} \times \frac{1}{2} \times 4 \times 4 \times 2$$

$$=\frac{16}{3}$$

三角すい EQCP の体積は、三角すい EABD の体 積の $\frac{1}{2}$ なので,

$$\frac{1}{3} \times \triangle QCP \times EF = \frac{16}{3} \times \frac{1}{2}$$

$$\frac{1}{3} \times \triangle QCP \times 2 = \frac{8}{3}$$

△QCP=4 B 右図でQから CD に下 ろした垂線と CD との 交点をSとする。

$$CP = CD - PD = 4 - \frac{4}{3} = \frac{8}{3}$$

なので.

$$\triangle QCP = \frac{1}{2} \times CP \times QS$$

$$4 = \frac{1}{2} \times \frac{8}{3} \times QS$$

$$QS = 3$$

よって、△BCD∽△QCSより、

BC : QC = BD : QS

BC : QC = 4 : 3

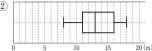
したがって、BQ:QC=1:3

第7講座 データの活用・確率・標本調査

P. 88

1 <解答例>

- (1) イ・エ (2) ア3 イ8, 最頻値36℃
- (3) $\bigcirc 118.95 \le a < 19.05$ $\bigcirc 225.3^{\circ}$
- (4) 480本 (5) ①17.5m ②0.2
- (6) ①2410歩 ②7.23km
- (7) ①13m ② [



<考え方・解き方>

- (1)ア男子の最頻値は5人が借りている<u>5</u>冊,女子は5 人が借りている3冊なので正しくない。
 - イ男子の範囲は $8-1=\underline{7(冊)}$, 女子は $9-2=\underline{7(冊)}$ な ので正しい。
 - ウ男子の中央値は少ない方から10番目の生徒と11番目の生徒が入っている階級の平均値だから4冊, 女子は8番目の生徒が入っている階級だから5冊なので正しくない。
 - エ男子は $(3+3+1) \div 20 = \underline{0.35}$, 女子は $(1+5) \div 15 = 0.4$ なので正しい。
 - オ35人の平均値は $(4 \times 20 + 5 \times 15) \div 35 = 4.42 \cdots (冊)$ なので正しくない。
- (2)**表 1** より、アが 3、イが 8 なので、日数が最も多いのは 9 日である。その階級は、35.0℃以上37.0℃未満なので、この階級の階級値が求める最頻値である。
- (3)②気温が低い順に日にちを並べると,5日,6日,1日,7日,2日,3日,4日,8日,9日,10日となる。よって,2日と3日の気温の平均値を求めて、

 $(24.8 + 25.8) \div 2 = 25.3(^{\circ}C)$

(4)箱の中のゴムバンドを x 本とすると,

x: 100.8 = 20: 4.2

x = 480(本)

- (5)2つの組の記録を (人) 同じヒストグラム 10 8 に表すと右図のよ 7 6

①15m以上20m 未 満の10人が最も 多い。この階級 の階級値は.

 $(15+20) \div 2 = 17.5 \text{ (m)}$

②40人だから、記録が小さい方からかぞえて、20番目、21番目の生徒はどちらも20m以上25m未満の階級に入っている。この階級の度数は8人だから、相対度数は.

 $8 \div 40 = 0.2$

(6)①平均=合計÷個数(日数)なので、

 $(2424 + 2400 + 2391 + 2420 + 2415) \div 5$

- $= 12050 \div 5$
- =2410

②①より, 歩数の合計は12050歩なので,

 $12050 \times 60 = 723000 \text{ (cm)}$

1km = 100000cm なので、

7.23km

- (7)①ハンドボール投げの記録の中央値は、距離の短い方から7番目、8番目の記録の平均値を求める。よって、 $(12+14)\div 2=13(m)$
 - ②①より、中央値=第2四分位数=13m 第2四分位数より左側の7個のハンドボール投げ の記録の中央値を求めて、第1四分位数=11m。 第2四分位数より右側の7個のハンドボール投げ の記録の中央値を求めて、第3四分位数=16m。 また、最小値は8m、最大値は18m。

P. 91

2 <解答例>

- (1) 19m (2) 0.25
- (3) a = 17, b = 19 a = 18, b = 18
- (4) 19.6m

<考え方・解き方>

- (1)度数が最も大きいのは $17\sim21$ の階級なので、 $(17+21) \div 2 = 19$ (m)
- (2)ヒストグラムより、25~29の階級に7人、29~33の 階級に3人いるので、25m以上投げたのは、

7 + 3 = 10

よって.

 $10 \div 40 = 0.25$

(3)ヒストグラムより、20番目、21番目の人はともに17~21の階級にいることがわかるので、

 $17 \le a \le b < 21$

また中央値が18m なので.

 $(a+b) \div 2 = 18$

a + b = 36

この2つの条件を満たす a, b の値は,

a = 17. b = 19

a = 18, b = 18

の2つである。

(4)ヒストグラムより.

 $(7 \times 3 + 11 \times 4 + 15 \times 6 + 19 \times 11 + 23 \times 6 + 27 \times 7 + 31$

 $\times 3) \div 40$

 $= 784 \div 40$

= 19.6 (m)

P. 92

3 <解答例>

- (1) 177. 5cm (2) 26. 5cm
- (3) ア 中央値 イ 0.2 (4) 1764人

<考え方・解き方>

(1)表 1 より、177cm は、175cm 以上180cm 未満の階 級に属するので、階級値は、

 $(175 + 180) \div 2 = 177.5 \text{ (cm)}$

- (2)表2より、度数が最も大きい階級は26.5(cm)
- (3)表2より、中央値は、50番目、51番目の2人がいる 階級なので、27

仮平均を中央値の27とおくと、下表のようになる。

靴のサイズ(cm)	度数(人)	仮平均との差	度数×仮平均
24. 5	2	-2.5	-5
25	6	-2	-12
25. 5	8	-1.5	-12
26	14	-1	-14
26. 5	18	-0.5	-9
27	17	0	0
27. 5	16	0. 5	8
28	11	1	11
28. 5	6	1. 5	9
29	2	2	4
計	100		-20

表より.

 $-20 \div 100 = -0.2$

つまり、平均値は中央値より0.2小さい。言い換えると、(ア)中央値の方が(イ)0.2cm 大きい。

(4)求める人数をxとおく。表3より、

98: 2 = x: 36x = 1764

P. 93

4 <解答例>

(1) イ、オ (2)10分30秒

(3) 記号:イ

理由:**図2**から,通学時間が18分未満の人数が22 人だから。

<考え方・解き方>

- (1)ア 範囲 = 最大値 最小値である。図1で6分なの は範囲ではなく、階級の幅なので正しくない。
 - イ 図1の最頻値は12分以上18分未満の階級の階級値になる。よって、 $(12+18)\div 2=15$ 分となり、正しい。
 - ウ 図1で中央値は通学時間が短い順に並べたときの17番目,18番目が含まれる階級の階級値となるので、18分以上24分未満の階級の階級値となる。よって、(18+24)÷2=21分となり、最頻値の15分と等しくないので、正しくない。
 - **エ 図1**で中央値が含まれる階級の度数は8であり、相対度数は8÷34=0.235…となり、0.25より小さい。よって正しくない。
 - オ 図1で通学時間が30分以上の生徒の度数は、3 +2+1=6で、その割合は6÷34×100=17.6…(%)である。よって、20%以下なので正しい。
- (2)図1と図2の違いは、0分以上6分未満の生徒が1人、6分以上12分未満の生徒が4人、12分以上18分未満の生徒が3人である。この8人の生徒の平均値は(3×1+9×4+15×3)÷8=84÷8=10.5分より、10分30秒となる。
- (3)**図2**から,通学時間が18分未満の人数が22人と読み とれる。

P. 94

5 <解答例>

(1) ①イ、エ

②記号:ア

理由:握力が40kg 未満の累積相対度数は,1 組の男子は0.6,1組と2組を合わせた 男子は0.55であり,1組の男子の方が大 きいから。

(2) $\mathcal{T}: 27$ $\mathcal{I}: 0.15$

<考え方・解き方>

- (1)ア 最頻値とは、度数が最も大きい階級の階級値な ので、表1では $(35+40) \div 2 = 37.5$ (kg)となり、正 しくない。
 - イ 表2の45kg 未満の累積度数は、1+3+3+5=12(人)となり、正しい。
 - **ウ 表1**における範囲は、50-30=20(kg)未満。**表 2**における範囲は、55-25=30(kg)未満。よって、正しくない。
 - エ 表 1 の30kg 以上35kg 未満の階級の相対度数は、 $4 \div 25 = 0.16$ 。 表 2 の30kg 以上35kg 未満の階級の相対度数は、 $3 \div 15 = 0.2$ となり、正しい。
- ②模範解答を参照。
- (2)ア 15人の平均値が0.4kg 大きくなるので、その合計は15×0.4=6(kg)大きくなればよい。よって、a=21+6=27(kg)となる。

イ 40人の平均値は6÷40=0.15(kg)大きくなる。

P. 95

6 <解答例>

- (1) ア 28 イ 9 (2) 1組 ア 2組 エ
- (3) イ. ウ

<考え方・解き方>

(1)範囲=最大値-最小値である。

1組の箱ひげ図より、最大値は71、最小値は43なので、アは、71-43=28回となる。

四分位範囲 = 第3四分位数 - 第1四分位数である。 1組の箱ひげ図より, 第3四分位数は60, 第1四分位数は51なので. **イ**は. 60-51 = 9回となる。

(2)1組の箱ひげ図より,最小値43,最大値71を満たす ヒストグラムは、**ア**となる。

2組の箱ひげ図より、最小値47、最大値68を満たす ヒストグラムは、**イ**とエである。

次に第1四分位数で比べる。最小値を含む19人の データの中央値が51回なので、10番目の生徒がいる 階級を調べる。イは、52回以上56回未満より、不適。 エは、48回以上52回未満より、条件を満たす。

よって、2組のヒストグラムは、エとなる。

(3)**ア**1組の範囲は28回,2組の範囲は21回となり,正しくない。

イ1組の四分位範囲は9回,2組の四分位範囲は14回となり,正しい。

ウ回数が64回以上である人数は、1組のヒストグラムより5人、2組のヒストグラムより10人となり、

正しい。

エ1組の箱ひげ図で第3四分位数が60回なので、60回以上反復横とびをした人は、全体の25%しかいないことがわかる。よって、平均値は60回より小さいと考えられるので、正しくない。

P. 96

7 <解答例>

- (1) A 0.1 B 0.75
- (2) ア.イ
- (3) 猛暑日の日数が40日以上の2回はⅡ期とⅣ期の1回ずつであり、30日以上40日未満となった年は1回 もないから。

<考え方・解き方>

(1)相対度数=階級の度数÷度数の合計なので、Aは、 4÷40=0.1となる。

累積相対度数=累積度数÷度数の合計なので、B は、 $(9+6+11+4)\div 40=30\div 40=0.75$ となる。

- (2)**ア** すべての四分位数が, I 期より II 期の方が多いので、正しい。
 - イ すべての四分位数が、Ⅱ期よりⅢ期の方が多 いので、正しい。
 - ウ 第2四分位数, 第3四分位数はIV期の方が少ないので, IV期が多いとはいえない。よって, 正しくない。
- (3)表より、猛暑日の日数が40日以上となったのは、2回で、図とあわせて見ると、Ⅱ期とⅣ期の1回ずつであることが分かる。表より、30日以上40日未満となった年は1度もないので、Ⅳ期の最大値のデータを除くとⅣ期の最大値は、25日以上30日未満となり、範囲は10日以上小さくなる。

P. 97

8 <解答例>

- (1) ①12通り ② $\frac{3}{4}$
- (2) $1\frac{5}{12}$ 274, $1\frac{7}{12}$
- (3) ①25通り ② $\frac{2}{5}$
- (4) $\bigcirc \frac{5}{18}$ $\bigcirc \frac{7}{12}$
- $(5) \frac{1}{4}$
- (6) ①13点 ② $\frac{1}{3}$
- (7) ① 5 点 ② $\frac{1}{3}$
- (8) ① 3個 ② 7
- (9) ①24点 ②ア8, イ $\frac{4}{15}$

(10) $\frac{4}{15}$

<考え方・解き方>

(1)A B C 結果 4 × 2 8

- $4 \div 2 2$
- $4 \times 4 16$
- $4 \div 4 1$
- $5 \times 2 10$
- $5 \div 2 \frac{5}{2}$
- $5 \times 4 20$
- $5 \div 4 \frac{5}{4}$
- $6 \times 2 12$
- 6 ÷ 2 3
- 6 × 4 24
- $6 \div 4 \frac{3}{2}$
- ① 上の図より、12通りである。
- ② 上の図より,整数になるのは9通りなので, 確率は $\frac{9}{12} = \frac{3}{4}$
- (2)(1)A B C 結果
 - 5 + 3 8
 - 5 3 2 \bigcirc
 - 5 + 4 9
 - 5 4 1
 - 6 + 3 9
 - 6 3 3 0
 - 6 + 4 10
 - 6 4 2 \bigcirc
 - 7 + 3 10
 - 7 3
 - 7 + 4 11 \bigcirc
 - 7 4 3 \bigcirc

上図より 5 通り、よって、 $\frac{5}{12}$

- ②計算結果が正の奇数になるには、
- ○奇数+偶数
- ○偶数+奇数
- ○奇数-偶数(ただし、奇数>偶数)
- ○偶数 奇数(ただし, 偶数 > 奇数) であればよい。

A に ③ を入れたとき C に は ④ 、 ⑤ が入る 正の 奇数 に なるの は .

3+4=7, 6+5=11, 6-5=17+4=11, 7-4=3

の 5 通りで確率は $\frac{5}{12}$

A に4を入れたとき 6 には3、5が入る。 正の奇数になるのは、

4+3=7, 4-3=1, 4+5=9, 6+3=9

6-3=3, 6+5=11, 6-5=1

の7通りなので、確率は $\frac{7}{12}$

A に⑤を入れたとき、⑥の図より正の奇数になるのは6 通りなので、確率は $\frac{1}{2}\left(\frac{6}{12}\right)$

よって、Aに4を入れたとき、最も確率が高くなり、

その確率は $\frac{7}{12}$ である。

(3)取り出し方をまとめると下表のようになる。

bの値

	a-b	1	2	3	4	5
	1	0	-1	-2	-3	-4
a	2	1	0	-1	-2	-3
の値	3	2	1	0	-1	-2
	4	3	2	1	0	-1
	5	4	3	2	1	0

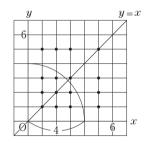
- ①表より、25通り。
- ②条件を満たすのは、表中の〇で、10通りである。 よって確率は、

$$\frac{10}{25} = \frac{2}{5}$$

(4)

		a v) iii											
		1		2	,	3	;	4	-	5	,	6	,
	1	(1,	1)	(1,	1)	(3,	1)	(2,	1)	(5,	1)	(3,	1)
b	2	(1,	1)	(1,	1)	(3,	1)	(2,	1)	(5,	1)	(3,	1)
0)	3	(1, :	3)	(1,	3)	(3,	3)	(2,	3)	(5,	3)	(3,	3)
値	4	(1, 2	2)	(1,	2)	(3,	2)	(2,	2)	(5,	2)	(3,	2)
	5	(1, ;	5)	(1,	5)	(3,	5)	(2,	5)	(5,	5)	(3,	5)
	6	(1, :	3)	(1,	3)	(3,	3)	(2,	3)	(5,	3)	(3,	3)

問題の条件にそって,整理すると上表のようになる。 また、上表で整理した座標を図に「・」として表す と次の図のようになる。



①上図より、y=x が通るのは、(1, 1)、(2, 2)、(3, 3)、(5, 5) の 4 点である。点 P がこのような座標になるのは表より10通りだとわかるので、確率は、

$$\frac{10}{36} = \frac{5}{18}$$

②中心を原点 O として、半径 4 の円をかくと上図のようになる。円の内側にある点は(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)の8点である。点 Pがこのような座標になるのは、上表より21通りだとわかるので、確率は、

$$\frac{21}{36} = \frac{7}{12}$$

 $(5)\frac{3b}{2a}$ の値をまとめると下表のようになる。

2a $3b$	3	6	9	12	15
2		3	$\frac{9}{2}$	6	$\frac{15}{2}$
4	$\frac{3}{4}$		$\frac{9}{2}$ $\frac{9}{4}$	3	$\frac{15}{4}$
6		1		2	$ \begin{array}{r} $
8	$\begin{array}{c c} \frac{1}{2} \\ \hline \frac{3}{8} \\ \hline \frac{3}{10} \end{array}$	$\frac{3}{4}$	9/8		15 8
10	$\frac{3}{10}$	$\begin{array}{r} \frac{3}{4} \\ \frac{3}{5} \end{array}$	$\frac{\frac{9}{8}}{\frac{9}{10}}$	<u>6</u> 5	

整数になるのは.

(a, b) = (1, 2), (1, 4), (2, 4), (3, 2), (3, 4) の 5 通り。 よって、 $\frac{5}{20} = \frac{1}{4}$

(6) ①取り出した3個の玉に書かれた3つの数は、3、 3.4で、2つの数が同じになる。

条件より、得点は、3×3+4=13(点)となる。

②取り出し方をまとめると下表のようになる。

袋A	袋B	得点
1	1, 3	1×1+3=4(点)
1	1, 4	1×1+4=5(点)
1	3, 4	1+3+4=8(点)
3	1, 3	3×3+1=10(点)
3	1, 4	1+3+4=8(点)
3	3, 4	3×3+4=13(点)

すべての取り出し方は6通り、得点が奇数になるのは2通りあるので、確率は $\frac{2}{6} = \frac{1}{3}$ となる。

- (7)赤玉を R₀, R₁, R₂, R₃, 白玉を W₂, W₃とする。
 - ①取り出した3個の玉は、 R_1 、 R_2 、 W_3 で、2個の 玉だけ色が同じになる。

条件より、得点は、1×2+3=5(点)となる。

②取り出し方をまとめると下表のようになる。

袋A	袋B	得点
R_1	R_0 , R_2	0+1+2=3(点)〇
R_1	R_0 , R_3	0+1+3=4(点)
R_1	R_0 , W_3	1×0+3=3(点)○
R_1	R ₂ , R ₃	1+2+3=6(点)
R_1	R_2 , W_3	1×2+3=5(点)〇
R_1	R ₃ , W ₃	1×3+3=6(点)
\mathbf{W}_2	R_0 , R_2	$0 \times 2 + 2 = 2$ (点)
\mathbf{W}_2	R_0 , R_3	0×3+2=2(点)
\mathbf{W}_2	R_0 , W_3	2×3+0=6(点)
\mathbf{W}_2	R_2 , R_3	2×3+2=8(点)
\mathbf{W}_2	R_2 , W_3	2×3+2=8(点)
\mathbf{W}_2	R ₃ , W ₃	2×3+3=9(点)〇

すべての取り出し方は12通り、得点が奇数になる

のは \bigcirc をつけた 4 通りなので、確率は $\frac{4}{12} = \frac{1}{3}$ となる。

(8)取り出し方をまとめると下表のようになる。

AB	1	2	3	4	5
1	11	12	13	14	15
2	21	22	23	24	25
3	31	32	33	34	35
4	41	42	43	44	45

- ①表より、6の倍数は、12、24、42の3個。
- ②表より、3の倍数は、12、15、21、24、33、42、 45の7個。よって確率は、 $\frac{7}{20}$ となる。
- (9)赤いカードを R_2 , R_3 , R_4 , R_6 , 白いカードを W_2 , W_3 , W_4 , W_6 とする。

取り出し方をまとめると下表のようになる。

AB	R_3	R_6	\mathbf{W}_3	\mathbf{W}_4	\mathbf{W}_{6}
R_2	6	12	5	6	8
R_4	12	24	7	8	10
\mathbf{W}_2	5	8	6	8	12

- ①表より、最大値は、24点。
- ②表より、最も多い得点は8点で、4通りある。

よって確率は、 $\frac{4}{15}$ となる。

(10) 取り出し方と得点をまとめると次のようになる。

袋箱	2	3	4	5	6
Α	2	3	4	5	6
В	4	6	8	10	12
С	9	10	11	12	13

得点が6の倍数になるのは、

(箱, 袋) = (A, 6), (B, 3), (B, 6), (C, 5)の 4 通り。

よって、 $\frac{4}{15}$

令和7年度学力検査問題(問題 A. 共通問題)(解答例)

問題番号	配点		標 準 解 答						
	1点	(1)	2 15						
	1.点	(2) 15							
	2点	$(3) \qquad -x + 9y$							
	2点	(4) 2b ²							
	2点	(5) 4 x ² + 19							
	(計10点) 2点	(6)	3√10						
	2点	(1) x = 9							
	2点	(2)							
	2点	(3)							
	2点	(4)	$\frac{7}{25}$						
		作図							
			В						
	2点	(5)							
2	2,	(0)	A P m						
	1点		① 1列目 2列目 3列目 4列目						
	2点	(6)	11 段目 0 0 1 1 1 2 n = 17						
	1点	-	① 1200 FI						
	(計16点) 2点	(7)	② ウ						
		700							
1	2点	(1)	A 22 B 0.34						
	2点	(1)	記号 理由						
			記号 理由 (図1のヒストグラムで、)中央値(第2四分						
3	2点	(2)	記号 理由						
3			記号 理由 (図1のヒストグラムで、)中央値 (第2四分 位数) が入っている階級は16m以上20m未満						
3			記号 理由 (図1のヒストグラムで、) 中央値 (第2四分 位数) が入っている階級は16m以上20m未満 であるが、3組の箱の行図の中央値 第2四分位 数) はこの階級に入っていないから。 ウ、エ、オ						
3	2点(計6点) 2点	(2) (3) (1)	記号 理由 (図1のヒストグラムで、) 中央値 (第2四分 位数) が入っている階級は16m以上20m未満 であるが、3種の箱の行図の中央値 第2四分位 数) はこの階級に入っていないから。 ウ. エ. オ						
	2点 (計6点) 2点 1点 1点	(2)	記号 理由 (図1のヒストグラムで、) 中央値 (第2四分 位数) が入っている階級は16m以上20m未満 であるが、3種の箱の打図の中央値 (第2四分位 数) はこの階級に入っていないから。 ウ、エ、オ イ エ 3 cm						
3	2点 (計6点) 2点 1点 1点 2点	(2) (3) (1) (2)	 記号 理由 (図1のヒストグラムで、) 中央値(第2回分位数)が入っている階級は16m以上20m未満であるが、3種の箱ひげ図の中央値(第2回分位数)はこの階級に入っていないから。 ウ、エ、オイ エ 3 cm ① 						
	2点 (計6煎) 2点 1点 1点 2点 (計6煎) 2点	(2) (3) (1) (2) (3)	理由 (図1のヒストグラムで.) 中央値 (第2 四分 位数) が入っている階級は16m以上20m未満 であるが、3 報の箱が17図の中央値 第2 四分位 数) はこの階級に入っていないから。						
	2.点 (計6.煎) 2.点 1.点 2.点 (計6.煎) 2.点 (計6.煎) 2.点	(2) (3) (1) (2) (3)	理由 (図1のヒストグラムで.) 中央値 (第2 四分 位数) が入っている階級は16 m 以上20 m 未満 であるが、3 報の箱が1図の中央値 第2 四分位数) はこの階級に入っていないから。						
4	2点 (計6煎) 2点 1点 1点 2点 (計6煎) 2点	(2) (3) (1) (2) (3)	 避り 理由 (図1のヒストグラムで、) 中央値 (第2回分位 数) が入っている階級は16m以上20m未満であるが、3 組の箱ひげ図の中央値 (第2回分位 数) はこの階級に入っていないから。						
	2.点 (計6.煎) 2.点 1.点 2.点 (計6.煎) 2.点 (計6.煎) 2.点	(2) (3) (1) (2) (3)	理由 (図1のヒストグラムで.) 中央値 (第2 四分 位数) が入っている階級は16 m 以上20 m 未満 であるが、3 報の箱が1図の中央値 第2 四分位数) はこの階級に入っていないから。						
4	2 点 (3+6 煎) 2 点 1 点 1 点 2 点 (3+6 煎) 2 点 (3+6 煎) 2 点	(2) (3) (1) (2) (3) (1) (2)	 避り 理由 (図1のヒストグラムで、) 中央値 (第2回分位 数) が入っている階級は16m以上20m未満であるが、3 組の箱ひげ図の中央値 (第2回分位 数) はこの階級に入っていないから。						
4	2 A 2 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 1 A	(2) (3) (1) (2) (3) (1) (2) (3)	正号 理由 (図1のヒストグラムで、) 中央値 (第2 四分位数) が入っている階級は16 m 以上20 m 未満 であるが、3 種の箱ひげ図の中央値 第2 四分位数) はこの階級に入っていないから。						
4	2 A 2 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 1 A	(2) (3) (1) (2) (3) (1) (2) (3)	選問 (図1のヒストグラムで、) 中央値 (第2 四分 位数) が入っている階級は16m以上20m未満 であるが、3 種の精砂で図の中央値 第2 四分位数) はこの階級に入っていないから。						
4	2 A 2 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 1 A	(2) (3) (1) (2) (3) (1) (2) (3)	避り 理由 (図1のヒストグラムで、) 中央値 (第2 四分位 文) が入っている階級は16 m 以上20 m 未満 であるが、3 種の前心げ図の中央値(第2 四分位 数)はこの階級に入っていないから。						
4	2点 (計6点) 2点 1点 2点 (計6点) 2点 1点 1点 2点 (計6点) 2点	(2) (3) (1) (2) (3) (1) (2) (3) (4)	理由 (図1のヒストグラムで、) 中央値(第2回分 (図1のヒストグラムで、) 中央値(第2回分 位 数)が入っている階級は16m以上20m未満 であるが、3種の箱が「図の中央値(第2回分位 数)はこの階級に入っていないから。						
4	2 A 2 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 1 A	(2) (3) (1) (2) (3) (1) (2) (3)	避り 理由 (図1のヒストグラムで、) 中央値 (第2 四分位 文) が入っている階級は16 m 以上20 m 未満 であるが、3 種の前心げ図の中央値(第2 四分位 数)はこの階級に入っていないから。						
5	2点 (計6点) 2点 1点 2点 (計6点) 2点 1点 1点 2点 (計6点) 2点	(2) (3) (1) (2) (3) (1) (2) (3) (4)	理由 (図1のヒストグラムで、) 中央値(第2四分 位数)が入っている階級は16m以上20m未満 であるが、3種の箱が「図の中央値(第2四分位 数)はこの階級に入っていないから。 ウ、エ、オ イ エ 3 cm ① 4 cm² ② 24 cm³						
5	2点 (計6点) 2点 1点 2点 (計6点) 2点 1点 1点 2点 (計6点) 2点	(2) (3) (1) (2) (3) (1) (2) (3) (4)	型特 (関1のヒストグラムで.) 中央値 (第2 四分位数) が入っている階級は16m以上20m未満であるが、3 額の箱のけ図の中央値(第2 四分位数)はこの階級に入っていないから。						
5	2点 (計6点) 2点 1点 2点 (計6点) 2点 1点 1点 2点 (計6点) 2点	(2) (3) (1) (2) (3) (1) (2) (3) (4)	理由 (図1のヒストグラムで、) 中央値(第2四分 位数)が入っている階級は16m以上20m未満 であるが、3種の箱のけ図の中央値(第2四分位 数)はこの階級に入っていないから。 ウ、エ、オ イ エ 3 cm ① 4 cm² ② 24 cm³						
5	2点 (計6点) 2点 1点 2点 (計6点) 2点 1点 1点 2点 (計6点) 2点	(2) (3) (1) (2) (3) (1) (2) (3) (4)	避り 理由 (図1のヒストグラムで、) 中央値(第2回分位 対 かたっている階級は16m以上20m未満 であるが、3 組の前ひげ図の中央値(第2回分位 数)はこの階級に入っていないから。						
5	2点 (計6点) 2点 1点 1点 2点 (計6点) 2点 1点 2点 (計6点) 2点	(2) (3) (1) (2) (3) (1) (2) (3) (4)	 避け (図1のヒストグラムで、) 中央値 (第2 四分位 対 が入っている階級は16m以上20m未満であるが、3 額の箱のけ図の中央値 (第2 四分位 数) はこの階級に入っていないから。 ウ、エ、オ 3 cm ① 4 cm² ② 24 cm² ② 24 cm² ② 1/2 cm² ② 24 cm² ② 24 cm² ② 6. 3/2) 証明 △AEFと△GDCにおいて 四角形EDCFは接方形だから EF/DC よって、∠AFE=∠GCD=90° よた、四角形とDGAは平行四辺形だから AE = GD ② ③より、直角三角形で斜辺と他の1辺がそれぞれ等しいから △AEF=△GDC 						

(解説)

1

(1)
$$\frac{1}{3} - \frac{1}{5}$$
 (2) $2 \times (7 - 9)$
= $\frac{5}{15} - \frac{3}{15}$ = $2 \times (-2)$
= $2 \times (-2)$

$$= \frac{15}{15}$$
(3) $7x + 4y - (8x - 5y)$ (4) $8a^{2}b \div (-6ab)^{2} \times 9b^{3}$

$$= 7x + 4y - 8x + 5y$$
 $= 8a^{2}b \div 36a^{2}b^{2} \times 9b^{3}$

$$= -x + 9y$$
 $= 8a^{2}b \times \frac{1}{36a^{2}b^{2}} \times 9b^{3}$

$$= \frac{8a^{2}b \times 1 \times 9b^{3}}{36a^{2}b^{2}}$$

$$= \frac{72a^{2}b^{4}}{36a^{2}b^{2}}$$

$$= 2b^{2}$$

$$\begin{array}{ll} (5) & (2x-3)^2+2(6x+5) & (6) & \sqrt{10}+\sqrt{40} \\ = 4x^2-12x+9+12x+10 & = \sqrt{10}+2\sqrt{10} \\ = 4x^2+19 & = 3\sqrt{10} \end{array}$$

$$2(1)5x + 8 = 6x - 1$$

$$5x - 6x = -1 - 8$$

$$-x = -9$$

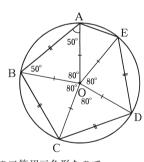
$$x = 9$$

$$(2)2x^{2} - 18$$

$$= 2(x^{2} - 9)$$

(3)右図のように、 各頂点と O を結ぶと、 △OAB、△OBC、 △OCD、△ODE は全て合同な二等辺 三角形となる。 よって、 ∠AOE = 360 − 80×4

=2(x+3)(x-3)



 \triangle OAE は、OA = OE の二等辺三角形なので、 \angle OAE = $(180-40)\div 2$ = 70°

(4)取り出し方と a+b の値をまとめると次のようになる。

	b の値						
	a+b	3	4	5	6	7	
	3	6	7	8	9	10	
a	4	7	8	9	10	11	
の 値	5	8	9	10	11	12	
	6	9	10	11	12	13	
	7	10	11	12	13	14	

通りである。よって確率は、 $\frac{1}{25}$

- (5)∠APB = 90°より、点 B を通る直線 m への垂線を作 図する。作図した垂線と直線 m の交点が、点 P で ある。
- (6)①1段目と4段目に記入した数が同じであることか ら、記入した数は1段目~3段目までをくり返 す。11÷3=3…2なので、1段目~3段目までの グループが3グループできて2段残る。

よって、11段目に記入した数は、2段目に記入し た数と同じになる。

②1段目~3段目までに記入した数で1グループ をつくっているから、その和は次のように6にな

$$(\underbrace{1+1+1+0}_{1$$
 段目 $(0+0+1+1)$ $+ \underbrace{(1+0+0+0)}_{3$ 段目 $(1+0+0+0)$

35÷6=5…5より、1段目~3段目までのグルー プが5グループ含まれるので、 $3\times5=15$ 段目。そ こから記入された数の和が5になるのは、1段目 ~ 2段目に記入した数を加えたときなので、15 +2=17段目となる。

(7)①この会社のタクシーで2500m移動したとき、0 ~ 1100m の距離の運賃は700円。残り2500-1100 =1400mの距離に加算される運賃を考えると、 1400÷300=4…200より、300m分の加算が4回と あまり200m分の加算がされる。

よって、 $700+100\times4+100=1200(円)$ となる。

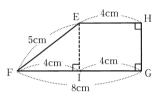
- ②ア しだいに運賃が高くなる右上がりの直線にな る区間はない。
 - $\mathbf{1}$ 運賃 $(y \circ f)$ が0円にならないので. x軸と 平行なグラフになる区間はない。また. しだ いに運賃が高くなる右上がりの直線になる区 間もない。
 - エ 運賃 $(y \circ f)$ が0円にならないので、x軸と 平行なグラフになる区間はない。

よって. ウ。

- 3(1)最頻値とは、度数がもっとも多い階級の階級値な ので、図1からAは、 $(20+22) \div 2 = 22(m)$ となる。 累積相対度数=累積度数÷度数の合計なので.Bは. (2+4+6) ÷ 35 = 12 ÷ 35 = 0.342…. 小数第3位を四 捨五入して、0.34となる。
 - (2)図1のヒストグラムで、中央値(第2四分位数)が 入っている階級は、35÷2=17···1 なので、18番目 となるから、16m 以上20m 未満の階級である。図 2 の箱ひげ図から、2 組の中央値は19m, 3 組の中 央値は20mと読みとれるので、3組が対応してい ないことがわかる。
 - (3)ア 第1四分位数は、17÷2=8…1なので9番目と なるから、修正前、後ともに(12+16)÷2=14 (m)となり、変わらない。
 - イ 中央値(第2四分位数)は、18番目となるから、 修正前、後ともに $(16+20) \div 2=18(m)$ となり、

変わらない。

- ウ 第3四分位数は、27番目となるから、修正前は、 $(24+28) \div 2 = 26 \text{ (m)}$ to the $(20+24) \div 2 = 22$ (m)となり、値が変わる。
- エ 四分位範囲は、第3四分位数-第1四分位数で 求める。ア. ウより、修正前は26-14=12(m) だが、修正後は22-14=8(m)となり、値が変 わる。
- (階級値×度数)の和で求める。修 オ 平均値は. 度数の合計 正前の26m と修正後の20m では、入っている 階級が変わるため、平均値も値が変わる。
- [4](1)空間内の2直線が、平行でなく、交わらないとき、 その2直線は、ねじれの位置にあるという。図1で、 辺ADとねじれの位置にある辺は、辺BF、辺CG、 辺 EF, 辺 HG の 4 つである。よって, ウとエとなる。
 - (2)右図において. 点 Eから辺FGに垂 線を下ろし、辺 FG との交点を点 Iとする。△EFI で三平方の定理 より.



 $IE^2 + FI^2 = EF^2$

 $IE^2 + 4^2 = 5^2$

 $IE^2 = 9$

IE>0より.

IE = 3

よって,

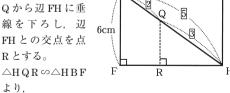
GH = IE = 3(cm) & backspace 5 cm) & backspace 5 cm & ba

(3)①右図において. 4cm $\triangle EPH \otimes \triangle GPF \downarrow \emptyset$. HP : FP = EH : GF3cm 3 =4:8=1:28cm $\triangle EFP = \triangle EFH \times \frac{2}{3}$

 $=\frac{1}{2}\times4\times3\times\frac{2}{3}$

 $=4(cm^2)$

②右図において、点 Qから辺FHに垂 線を下ろし,辺 FHとの交点を点 Rとする。



B

QR : BF = HQ : HBQR:6=3:5

 $QR = \frac{18}{5}$

よって、三角すい QEFP の体積は、

$$\begin{split} \frac{1}{3} \times \triangle \mathbf{EFP} \times \mathbf{QR} &= \frac{1}{3} \times 4 \times \frac{18}{5} \\ &= \frac{24}{5} (cm^2) \end{split}$$

[5](1) $y = ax^2$ に A(8, 8) を代入して、

$$8 = a \times 8^2$$

$$a = \frac{1}{8}$$

(2) B の y 座標が 2 より, $y = \frac{1}{8} x^2$ に y = 2を代入すると,

$$2 = \frac{1}{8} \times x^2$$

$$x^2 = 16$$

$$x = -4$$

したがって、点Bのx座標は-4となる。

- (3)A(8, 8), B(-4, 2)を通る直線の式を求める。
- (4) P の x 座標を t とすると,

$$P(t, \frac{1}{8}t^2)$$
, $Q(t, \frac{1}{2}t+4)$ となる。

$$PQ = \frac{1}{2}t + 4 - \frac{1}{8}t^2$$

ここで、
$$PQ = \frac{5}{2}$$
より、

$$\frac{1}{2}t+4-\frac{1}{8}t^2=\frac{5}{2}$$

$$t^2 - 4t - 12 = 0$$

$$t = -2, 6$$

 $0 \le t \le 8 \sharp 0$, t = 6

したがって、点Pの座標は $(6, \frac{9}{2})$ となる。

6(1)模範解答を参照。

(2) ED//AC より、△BED∽△BAC なので、

$$ED : AC = BD : BC$$

$$ED: 4=2:8$$

$$ED = 1 (cm)$$

$$GC = AC - AG = 4 - 1 = 3 (cm)$$
,

また、△GDCで三平方の定理より、

$$\mathbf{G}\mathbf{D}^2 = \mathbf{D}\mathbf{C}^2 + \mathbf{G}\mathbf{C}^2$$

$$GD^2 = 6^2 + 3^2$$

$$GD^2 = 45$$

$$GD = 3\sqrt{5}$$

ここで、△GHF∽△GDCより、

$$GH : GD = GF : GC$$

$$GH: 3\sqrt{5} = 2:3$$

$$GH = 2\sqrt{5} (cm)$$

令和7年度学力検査問題(問題B)(解答例)

問題番号	配点				標準	解	2	<u> </u>	
	1点	(1)				2 15			
1	1点	(2)							
	2点	(3)	-x + 9y						
	2点	(4)	$2b^2$						
	2点	(5)							
	(計10点) 2点	(6)	3√10						
	2点	(1)							
	2点	(2)							
	2点	(3)	7						
	2点	(4) 25							
2	2点	(5)	作図 (次のいずれかである。) A (5)						
	1点	(6)	1			21	В		
1	2点	(0)	2			2 n + 1			
ĺ	1点		1			ウ			
	1点	(7)	2	Р		2500)		
	(計16点) 1点	(1)	-	Q	480	R		0.34	
ĺ	2点	(1)	A 記		理由	В		0.34	
3	2点	(2)	(図1のヒストグラムで、)中央値 [第2四分 位数)が入っている階級は16m以上20m未満 イ であるが、3組の箱ひげ図の中央値 (第2四分位 数)はこの階級に入っていないから。						
	(計6点) 2点	(3)			ウ,	工, 才			
	1点	(1)					T		
4	1点	(2)				3 cm			
''	2点	(3)	1			4 cm ²			
	(計6点) 2点		② $\frac{24}{5}$ cm ³						
	1点	(1)	- 4						
5	2点	(2)			y = -	$-\frac{1}{2}x + $	2		
ا ا	1点	(=)	1			$\frac{1}{2}t^2 + t$			
	(計6点) 2点	(3)	2						
			 証明						
6	3 Å	(1)	a	①, ③。 ∠AH OAと(AF= OC #A る。よ。 FC/ ⑥より ∠DH ④, ⑦。	より EB = ∠FDC OC はともに半円 OC のC ADだから、⑤よって、 # AB FC = ∠EAB より、2組の角が FC ∞ △ EAB	り、四角 それぞれ 2√2 cm	形FA 等しい	・④ = AFだから ・⑤ OCはひし形で ・⑥	
6 計			a	①, ③。 ∠AH OAと(AF= OC #A る。よ。 FC/ ⑥より ∠DH ④, ⑦。	より EB = ∠FDC OC はともに半円 OC のC ADだから、⑤よって、 # AB FC = ∠EAB より、2組の角が FC ∞ △ EAB	り、四角	形FA 等しい	・④ = AFだから ・⑤ OCはひし形で ・⑥	

(解説)

[1]・[2](1)~(4)・[3]・[4] は選択問題 A の解説を参照してください。

- [2](5)半円の弧に対する円周角は、直角であることを利用する。作図の手順は以下の通り。
 - ①線分ABの垂直二等分線を作図する。
 - ②①と線分 AB の交点を点 O とする。
 - ③半径 OA の円を作図する。
 - ④③と直線ℓの交点が点 Pである。このとき、点 Pは2つ作図できるので、どちらか1つを点 Pとする。
 - (6)①**図2**より, 1段目と4段目に記入した数が同じであることから, 記入した数は1段目~3段目までをくり返す。

 $10 \div 3 = 3 \cdots 1$ なので、1段目~3段目までのグループが3グループできて1段残る。

このとき、残った1段の10段目に記入した数は、 1段目に記入した数と同じになる。

また、1段目~3段目までに記入した数で1グループをつくっているから、その和は次のように6になる。

$$(\underbrace{1+1+1+0}_{1$$
 段目}) + $\underbrace{(0+0+1+1)}_{2$ 段目 $(1+0+0+0)$ = 6

よって、10段目 4 列目まで記入したすべての数の和は、 $6 \times 3 + 3 = 21$

②nを3の倍数から2引いた自然数とするので、n = 1, 4, 7, 10…となる。このとき、n段目と記入したすべての数の和を表にすると、

+3 +3						
n 段目	1	4	7		n	
和	3	9	15		?	
+6 +6						

3段増えるごとに和は6ずつ増えているから,

1 段増えるごとに和は $6 \div 3 = 2$ ずつ増えると考える。

よって、n段目の4列目まで記入したすべての数の和は、

3+2(n-1)=2n+1

- (7)①ア しだいに運賃が高くなる右上がりの直線になる区間はない。
 - イ 運賃(yの値)が0円にならないので、x軸と平行なグラフになる区間はない。また、しだいに運賃が高くなる右上がりの直線になる区間もない。
 - エ 運賃 $(y \circ de)$ が 0 円にならないので、x 軸 と平行なグラフになる区間はない。

よって.ウ。

②この会社のタクシーで6300m 移動したときの金額 A は、 $0 \sim 1100$ m の距離の運賃は700円。残り6300-1100 = 5200m の距離に加算される運賃を考えると、 $5200 \div 300 = 17 \cdots 100$ より、300m 分の

加算が17回とあまり100m分の加算がされる。

よって、 $P = 700 + 100 \times 17 + 100 = 2500$ (円) となる。

次に、金額 A が2500円、金額 A と金額 B の合計が2900円より、

金額 B=2900-2500=400(円)となる。

表2の続きを考えると.

時速 10km 以下であった時間	金額 B(円)
120 秒まで	0
120 秒をこえて 240 秒まで	100
240 秒をこえて 360 秒まで	200
360 秒をこえて 480 秒まで	300
480 秒をこえて 600 秒まで	400
:	:

よって、Q=480(秒)、R=600(秒) となる。

[**5**(1)点 A は関数⑦上にあるから,

$$y = -\frac{1}{2}x^2$$
に $x = 2$ を代入して,

$$y = -\frac{1}{2} \times 2^2$$

y = -2

よって、A(2. −2)となる。

直線 AB の式は、原点を通る直線なので、y=bx と表せる。これに A(2, -2) を代入して、

$$-2 = b \times 2$$

$$b = -1$$

よって、直線 AB の式は、y = -x

ここで、点Bのy座標は4なので、y = -xに代入して、

$$4 = -x$$

$$x = -4$$

よって、B(-4, 4)となる。

点Bは関数①上にあるから,

 $y = ax^2$ に x = -4, y = 4を代入して,

$$4 = a \times (-4)^2$$

$$a = \frac{1}{4}$$

(2)B(-4, 4), C(4, 0)を通る直線の式を求める。

(3)① $y = \frac{1}{4}x^2$ に x = t を代入して、 $y = \frac{1}{4}t^2$ より、

$$P(t, \frac{1}{4}t^2)$$
となる。

また, Dは, 直線 BC の切片なので, D(0, 2)と なる

よって、四角形 OCPD = △OCP + △OPD より、

 $\triangle OCP = \frac{1}{2} \times OC \times \triangle P \mathcal{O} y$ 座標

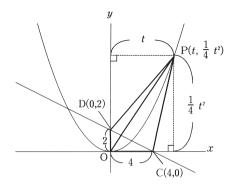
$$= \frac{1}{2} \times 4 \times \frac{1}{4} t^2$$

$$=\frac{1}{2}t^2$$

 $\triangle OPD = \frac{1}{2} \times OD \times \text{点 P } Ox$ 座標

$$= \frac{1}{2} \times 2 \times t$$
$$= t$$

したがって、四角形 OCPD = $\frac{1}{2}t^2 + t$ と表すことができる。



②△BAC = △OCB + △OCA
$$\sharp$$
 ϑ ,

$$= \frac{1}{2} \times 4 \times 4 + \frac{1}{2} \times 4 \times 2$$
$$= 12$$

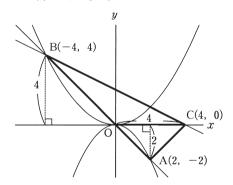
四角形 OCPD = △BAC×2より,

$$\frac{1}{2}t^2 + t = 12 \times 2$$

$$t^2 + 2t - 48 = 0$$

$$t = -8, 6$$

2 < t より、t = 6 となる。



6(1)模範解答を参照。

(2)①(1)より、四角形 FAOC はひし形となる。

よって、AとCを結ぶと、∠FAC=∠OAC、

また、 $\angle ADC = \angle ACB = 90$ °だから、

△ACD∽△ABC···(i)

△ABCで、三平方の定理より、

 $AB^2 = AC^2 + BC^2$

$$9^2 = AC^2 + 3^2$$

AC>0より.

 $AC = 6\sqrt{2} (cm)$

(i)より、

DC : CB = AC : AB

DC: $3 = 6\sqrt{2} : 9$

 $DC = 2\sqrt{2} (cm)$

②四角形 FAOC はひし形より,

$$AO = AF = OC = FC = \frac{9}{2}(cm)$$

△DFC で三平方の定理より,

$$FC^2 = DF^2 + DC^2$$

$$(\frac{9}{2})^2 = DF^2 + (2\sqrt{2})^2$$

$$DF = \frac{7}{2}(cm)$$

(1)より、△DFC∽△EAB なので、

$$DF : EA = FC : AB$$

$$\frac{7}{2}$$
: EA = $\frac{9}{2}$: 9

$$EA = 7 (cm)$$

$$=7-\frac{9}{2}$$

$$=\frac{5}{2}(cm)$$